How Could Generative AI Support Compliance with the EU AI Act? A Review for Safe Automated Driving Perception
- URL: http://arxiv.org/abs/2408.17222v1
- Date: Fri, 30 Aug 2024 12:01:06 GMT
- Title: How Could Generative AI Support Compliance with the EU AI Act? A Review for Safe Automated Driving Perception
- Authors: Mert Keser, Youssef Shoeb, Alois Knoll,
- Abstract summary: Deep Neural Networks (DNNs) have become central for the perception functions of autonomous vehicles.
The European Union (EU) Artificial Intelligence (AI) Act aims to address these challenges by establishing stringent norms and standards for AI systems.
This review paper summarizes the requirements arising from the EU AI Act regarding DNN-based perception systems and systematically categorizes existing generative AI applications in AD.
- Score: 4.075971633195745
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep Neural Networks (DNNs) have become central for the perception functions of autonomous vehicles, substantially enhancing their ability to understand and interpret the environment. However, these systems exhibit inherent limitations such as brittleness, opacity, and unpredictable behavior in out-of-distribution scenarios. The European Union (EU) Artificial Intelligence (AI) Act, as a pioneering legislative framework, aims to address these challenges by establishing stringent norms and standards for AI systems, including those used in autonomous driving (AD), which are categorized as high-risk AI. In this work, we explore how the newly available generative AI models can potentially support addressing upcoming regulatory requirements in AD perception, particularly with respect to safety. This short review paper summarizes the requirements arising from the EU AI Act regarding DNN-based perception systems and systematically categorizes existing generative AI applications in AD. While generative AI models show promise in addressing some of the EU AI Acts requirements, such as transparency and robustness, this review examines their potential benefits and discusses how developers could leverage these methods to enhance compliance with the Act. The paper also highlights areas where further research is needed to ensure reliable and safe integration of these technologies.
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - AI Cards: Towards an Applied Framework for Machine-Readable AI and Risk Documentation Inspired by the EU AI Act [2.1897070577406734]
Despite its importance, there is a lack of standards and guidelines to assist with drawing up AI and risk documentation aligned with the AI Act.
We propose AI Cards as a novel holistic framework for representing a given intended use of an AI system.
arXiv Detail & Related papers (2024-06-26T09:51:49Z) - Navigating the EU AI Act: A Methodological Approach to Compliance for Safety-critical Products [0.0]
This paper presents a methodology for interpreting the EU AI Act requirements for high-risk AI systems.
We first propose an extended product quality model for AI systems, incorporating attributes relevant to the Act not covered by current quality models.
We then propose a contract-based approach to derive technical requirements at the stakeholder level.
arXiv Detail & Related papers (2024-03-25T14:32:18Z) - Responsible Artificial Intelligence: A Structured Literature Review [0.0]
The EU has recently issued several publications emphasizing the necessity of trust in AI.
This highlights the urgent need for international regulation.
This paper introduces a comprehensive and, to our knowledge, the first unified definition of responsible AI.
arXiv Detail & Related papers (2024-03-11T17:01:13Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Generative AI in EU Law: Liability, Privacy, Intellectual Property, and Cybersecurity [1.9806397201363817]
This paper delves into the legal and regulatory implications of Generative AI and Large Language Models (LLMs) in the European Union context.
It analyzes aspects of liability, privacy, intellectual property, and cybersecurity.
It proposes recommendations to ensure the safe and compliant deployment of generative models.
arXiv Detail & Related papers (2024-01-14T19:16:29Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.