(Un)supervised Learning of Maximal Lyapunov Functions
- URL: http://arxiv.org/abs/2408.17246v2
- Date: Mon, 26 May 2025 12:43:07 GMT
- Title: (Un)supervised Learning of Maximal Lyapunov Functions
- Authors: Matthieu Barreau, Nicola Bastianello,
- Abstract summary: We design a novel neural network architecture, which we prove to be a universal approximator of (maximal) Lyapunov functions.<n>We formulate the problem of training the Lyapunov function as an unsupervised optimization problem with dynamical constraints.<n>We show that it matches or outperforms state-of-the-art alternatives in the accuracy of the approximated regions of attraction.
- Score: 0.4910937238451484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the problem of discovering maximal Lyapunov functions, as a means of determining the region of attraction of a dynamical system. To this end, we design a novel neural network architecture, which we prove to be a universal approximator of (maximal) Lyapunov functions. The architecture combines a local quadratic approximation with the output of a neural network, which models global higher-order terms in the Taylor expansion. We formulate the problem of training the Lyapunov function as an unsupervised optimization problem with dynamical constraints, which can be solved leveraging techniques from physics-informed learning. We propose and analyze a tailored training algorithm, based on the primal-dual algorithm, that can efficiently solve the problem. Additionally, we show how the learning problem formulation can be adapted to integrate data, when available. We apply the proposed approach to different classes of systems, showing that it matches or outperforms state-of-the-art alternatives in the accuracy of the approximated regions of attraction.
Related papers
- A Simultaneous Approach for Training Neural Differential-Algebraic Systems of Equations [0.4935512063616847]
We study neural differential-algebraic systems of equations (DAEs), where some unknown relationships are learned from data.<n>We apply the simultaneous approach to neural DAE problems, resulting in a fully discretized nonlinear optimization problem.<n>We achieve promising results in terms of accuracy, model generalizability and computational cost, across different problem settings.
arXiv Detail & Related papers (2025-04-07T01:26:55Z) - Neural Lyapunov Function Approximation with Self-Supervised Reinforcement Learning [6.359354545489252]
This paper presents a novel, sample-efficient method for neural approximation of nonlinear Lyapunov functions.
The proposed approach employs a data-driven World Model to train Lyapunov functions from off-policy trajectories.
The method is validated on both standard and goal-conditioned robotic tasks, demonstrating faster convergence and higher approximation accuracy.
arXiv Detail & Related papers (2025-03-19T18:29:25Z) - Global Convergence and Rich Feature Learning in $L$-Layer Infinite-Width Neural Networks under $μ$P Parametrization [66.03821840425539]
In this paper, we investigate the training dynamics of $L$-layer neural networks using the tensor gradient program (SGD) framework.
We show that SGD enables these networks to learn linearly independent features that substantially deviate from their initial values.
This rich feature space captures relevant data information and ensures that any convergent point of the training process is a global minimum.
arXiv Detail & Related papers (2025-03-12T17:33:13Z) - Chebyshev Polynomial-Based Kolmogorov-Arnold Networks: An Efficient Architecture for Nonlinear Function Approximation [0.0]
This paper presents the Chebyshev Kolmogorov-Arnold Network (Chebyshev KAN), a new neural network architecture inspired by the Kolmogorov-Arnold theorem.
By utilizing learnable functions parametrized by Chebyshevs on the network's edges, Chebyshev KANs enhance flexibility, efficiency, and interpretability in function approximation tasks.
arXiv Detail & Related papers (2024-05-12T07:55:43Z) - Exploring the Frontiers of Softmax: Provable Optimization, Applications in Diffusion Model, and Beyond [32.734716767055836]
This paper provides a theoretical study of the optimization and generalization properties of two-layer softmax neural networks.
We show that softmax neural networks can learn the target function in the over-parametrization regime.
Our work paves the way for further advancements in natural language processing and beyond.
arXiv Detail & Related papers (2024-05-06T08:15:29Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.
LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.
Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Learning ground states of gapped quantum Hamiltonians with Kernel
Methods [0.0]
We introduce a statistical learning approach that makes the optimization trivial by using kernel methods.
Our scheme is an approximate realization of the power method, where supervised learning is used to learn the next step of the power.
arXiv Detail & Related papers (2023-03-15T19:37:33Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
We propose a radically different approach in that no data is required for training the neural networks that produce the solution.
In particular, we reduce the optimization problem to a neural network and employ a dataless training scheme to refine the parameters of the network such that those parameters yield the structure of interest.
arXiv Detail & Related papers (2022-03-15T19:21:31Z) - A Free Lunch with Influence Functions? Improving Neural Network
Estimates with Concepts from Semiparametric Statistics [41.99023989695363]
We explore the potential for semiparametric theory to be used to improve neural networks and machine learning algorithms.
We propose a new neural network method MultiNet, which seeks the flexibility and diversity of an ensemble using a single architecture.
arXiv Detail & Related papers (2022-02-18T09:35:51Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Lyapunov-Net: A Deep Neural Network Architecture for Lyapunov Function
Approximation [7.469944784454579]
We develop a versatile deep neural network architecture, called Lyapunov-Net, to approximate Lyapunov functions in high dimensions.
Lyapunov-Net guarantees positive definiteness, and thus it can be easily trained to satisfy the negative orbital derivative condition.
arXiv Detail & Related papers (2021-09-27T21:42:19Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
Deep Feedback Control (DFC) is a new learning method that uses a feedback controller to drive a deep neural network to match a desired output target and whose control signal can be used for credit assignment.
The resulting learning rule is fully local in space and time and approximates Gauss-Newton optimization for a wide range of connectivity patterns.
To further underline its biological plausibility, we relate DFC to a multi-compartment model of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity rule, consistent with recent theories of dendritic processing.
arXiv Detail & Related papers (2021-06-15T05:30:17Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Recurrent Localization Networks applied to the Lippmann-Schwinger
Equation [0.0]
We present a novel machine learning approach for solving equations of the generalized Lippmann-Schwinger (L-S) type.
As part of a learning-based loop unrolling, we use a recurrent convolutional neural network to iteratively solve the governing equations for a field of interest.
We demonstrate our learning approach on the two-phase elastic localization problem, where it achieves excellent accuracy on the predictions of the local (i.e., voxel-level) elastic strains.
arXiv Detail & Related papers (2021-01-29T20:54:17Z) - Neural Network Approximations of Compositional Functions With
Applications to Dynamical Systems [3.660098145214465]
We develop an approximation theory for compositional functions and their neural network approximations.
We identify a set of key features of compositional functions and the relationship between the features and the complexity of neural networks.
In addition to function approximations, we prove several formulae of error upper bounds for neural networks.
arXiv Detail & Related papers (2020-12-03T04:40:25Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.