Equation identification for fluid flows via physics-informed neural networks
- URL: http://arxiv.org/abs/2408.17271v1
- Date: Fri, 30 Aug 2024 13:17:57 GMT
- Title: Equation identification for fluid flows via physics-informed neural networks
- Authors: Alexander New, Marisel VillafaƱe-Delgado, Charles Shugert,
- Abstract summary: We present a new benchmark problem for inverse PINNs based on a parametric sweep of the 2D Burgers' equation with rotational flow.
We show that a novel strategy that alternates between first- and second-order optimization proves superior to typical first-order strategies for estimating parameters.
- Score: 46.29203572184694
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Scientific machine learning (SciML) methods such as physics-informed neural networks (PINNs) are used to estimate parameters of interest from governing equations and small quantities of data. However, there has been little work in assessing how well PINNs perform for inverse problems across wide ranges of governing equations across the mathematical sciences. We present a new and challenging benchmark problem for inverse PINNs based on a parametric sweep of the 2D Burgers' equation with rotational flow. We show that a novel strategy that alternates between first- and second-order optimization proves superior to typical first-order strategies for estimating parameters. In addition, we propose a novel data-driven method to characterize PINN effectiveness in the inverse setting. PINNs' physics-informed regularization enables them to leverage small quantities of data more efficiently than the data-driven baseline. However, both PINNs and the baseline can fail to recover parameters for highly inviscid flows, motivating the need for further development of PINN methods.
Related papers
- Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
We leverageformed-Informed Neural Networks (PINs) to learn solution functions of parametric Navier-Stokes equations (NSE)
We consider the parameter(s) of interest as inputs of PINs along with coordinates, and train PINs on numerical solutions of parametric-PDES for instances of the parameters.
We show that our proposed approach results in optimizing PINN models that learn the solution functions while making sure that flow predictions are in line with conservational laws of mass and momentum.
arXiv Detail & Related papers (2024-02-05T16:19:53Z) - Dynamically configured physics-informed neural network in topology
optimization applications [4.403140515138818]
The physics-informed neural network (PINN) can avoid generating enormous amounts of data when solving forward problems.
A dynamically configured PINN-based topology optimization (DCPINN-TO) method is proposed.
The accuracy of the displacement prediction and optimization results indicate that the DCPINN-TO method is effective and efficient.
arXiv Detail & Related papers (2023-12-12T05:35:30Z) - Correcting model misspecification in physics-informed neural networks
(PINNs) [2.07180164747172]
We present a general approach to correct the misspecified physical models in PINNs for discovering governing equations.
We employ other deep neural networks (DNNs) to model the discrepancy between the imperfect models and the observational data.
We envision that the proposed approach will extend the applications of PINNs for discovering governing equations in problems where the physico-chemical or biological processes are not well understood.
arXiv Detail & Related papers (2023-10-16T19:25:52Z) - RANS-PINN based Simulation Surrogates for Predicting Turbulent Flows [3.1861308132183384]
We introduce RANS-PINN, a modified PINN framework, to predict flow fields in high Reynolds number turbulent flow regimes.
To account for the additional complexity introduced by turbulence, RANS-PINN employs a 2-equation eddy viscosity model based on a Reynolds-averaged Navier-Stokes (RANS) formulation.
arXiv Detail & Related papers (2023-06-09T16:55:49Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
We introduce a new method, symmetry-enhanced physics informed neural network (SPINN) where the invariant surface conditions induced by the Lie symmetries of PDEs are embedded into the loss function of PINN.
We show that SPINN performs better than PINN with fewer training points and simpler architecture of neural network.
arXiv Detail & Related papers (2022-06-19T00:44:22Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.