Facilitating phenotyping from clinical texts: the medkit library
- URL: http://arxiv.org/abs/2409.00164v1
- Date: Fri, 30 Aug 2024 16:54:06 GMT
- Title: Facilitating phenotyping from clinical texts: the medkit library
- Authors: Antoine Neuraz, Ghislain Vaillant, Camila Arias, Olivier Birot, Kim-Tam Huynh, Thibaut Fabacher, Alice Rogier, Nicolas Garcelon, Ivan Lerner, Bastien Rance, Adrien Coulet,
- Abstract summary: Phenotyping consists in applying algorithms to identify individuals associated with a specific, potentially complex, trait or condition.
Because a lot of the clinical information of EHRs are lying in texts, phenotyping from text takes an important role in studies that rely on the secondary use of EHRs.
We developed an open-source Python library named medkit to facilitate the development, evaluation and reproductibility of phenotyping pipelines.
- Score: 1.7924255866089314
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Phenotyping consists in applying algorithms to identify individuals associated with a specific, potentially complex, trait or condition, typically out of a collection of Electronic Health Records (EHRs). Because a lot of the clinical information of EHRs are lying in texts, phenotyping from text takes an important role in studies that rely on the secondary use of EHRs. However, the heterogeneity and highly specialized aspect of both the content and form of clinical texts makes this task particularly tedious, and is the source of time and cost constraints in observational studies. To facilitate the development, evaluation and reproductibility of phenotyping pipelines, we developed an open-source Python library named medkit. It enables composing data processing pipelines made of easy-to-reuse software bricks, named medkit operations. In addition to the core of the library, we share the operations and pipelines we already developed and invite the phenotyping community for their reuse and enrichment. medkit is available at https://github.com/medkit-lib/medkit
Related papers
- Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data
Generation with Large Language Models [48.07083163501746]
Clinical natural language processing requires methods that can address domain-specific challenges.
We propose an innovative, resource-efficient approach, ClinGen, which infuses knowledge into the process.
Our empirical study across 7 clinical NLP tasks and 16 datasets reveals that ClinGen consistently enhances performance across various tasks.
arXiv Detail & Related papers (2023-11-01T04:37:28Z) - EasyNER: A Customizable Easy-to-Use Pipeline for Deep Learning- and
Dictionary-based Named Entity Recognition from Medical Text [32.73124984242397]
We develop an easy-to-use end-to-end pipeline for deep learning- and dictionary-based named entity recognition.
The pipeline can access and process large medical research article collections ( CORD-19) or raw text.
The output consists of publication-ready ranked lists and graphs of detected entities and files containing the annotated texts.
arXiv Detail & Related papers (2023-04-16T15:17:56Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
The study highlights the difficulties faced in sharing tools and resources in this domain.
We annotated a corpus of clinical documents according to 12 types of identifying entities.
We build a hybrid system, merging the results of a deep learning model as well as manual rules.
arXiv Detail & Related papers (2023-03-23T17:17:46Z) - TemporAI: Facilitating Machine Learning Innovation in Time Domain Tasks
for Medicine [91.3755431537592]
TemporAI is an open source Python software library for machine learning (ML) tasks involving data with a time component.
It supports data in time series, static, and eventmodalities and provides an interface for prediction, causal inference, and time-to-event analysis.
arXiv Detail & Related papers (2023-01-28T17:57:53Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
We propose the Re$3$Writer method with retrieval-augmented generation and knowledge-grounded reasoning.
We demonstrate the effectiveness of our method in generating patient discharge instructions.
arXiv Detail & Related papers (2022-10-23T16:34:39Z) - EHRKit: A Python Natural Language Processing Toolkit for Electronic
Health Record Texts [12.10507006658038]
We create a python library for clinical texts, EHRKit.
This library contains two main parts: MIMIC-III-specific functions and tasks specific functions.
The first part introduces a list of interfaces for accessing MIMIC-III NOTEEVENTS data, including basic search, information retrieval, and information extraction.
The second part integrates many third-party libraries for up to 12 off-shelf NLP tasks such as named entity recognition, summarization, machine translation, etc.
arXiv Detail & Related papers (2022-04-13T18:51:01Z) - Slot Filling for Biomedical Information Extraction [0.5330240017302619]
We present a slot filling approach to the task of biomedical IE.
We follow the proposed paradigm of coupling a Tranformer-based bi-encoder, Dense Passage Retrieval, with a Transformer-based reader model.
arXiv Detail & Related papers (2021-09-17T14:16:00Z) - PharmKE: Knowledge Extraction Platform for Pharmaceutical Texts using
Transfer Learning [0.0]
PharmKE is a text analysis platform that applies deep learning through several stages for thorough semantic analysis of pharmaceutical articles.
The methodology is used to create accurately labeled training and test datasets, which are then used to train models for custom entity labeling tasks.
The obtained results are compared to the fine-tuned BERT and BioBERT models trained on the same dataset.
arXiv Detail & Related papers (2021-02-25T19:36:35Z) - Text Mining to Identify and Extract Novel Disease Treatments From
Unstructured Datasets [56.38623317907416]
We use Google Cloud to transcribe podcast episodes of an NPR radio show.
We then build a pipeline for systematically pre-processing the text.
Our model successfully identified that Omeprazole can help treat heartburn.
arXiv Detail & Related papers (2020-10-22T19:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.