DiverseDialogue: A Methodology for Designing Chatbots with Human-Like Diversity
- URL: http://arxiv.org/abs/2409.00262v1
- Date: Fri, 30 Aug 2024 21:33:58 GMT
- Title: DiverseDialogue: A Methodology for Designing Chatbots with Human-Like Diversity
- Authors: Xiaoyu Lin, Xinkai Yu, Ankit Aich, Salvatore Giorgi, Lyle Ungar,
- Abstract summary: We show that GPT-4o mini, when used as simulated human participants, systematically differ from those between actual humans across multiple linguistic features.
We propose an approach that automatically generates prompts for user simulations by incorporating features derived from real human interactions.
Our method of prompt optimization, tailored to target specific linguistic features, shows significant improvements.
- Score: 5.388338680646657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs), which simulate human users, are frequently employed to evaluate chatbots in applications such as tutoring and customer service. Effective evaluation necessitates a high degree of human-like diversity within these simulations. In this paper, we demonstrate that conversations generated by GPT-4o mini, when used as simulated human participants, systematically differ from those between actual humans across multiple linguistic features. These features include topic variation, lexical attributes, and both the average behavior and diversity (variance) of the language used. To address these discrepancies, we propose an approach that automatically generates prompts for user simulations by incorporating features derived from real human interactions, such as age, gender, emotional tone, and the topics discussed. We assess our approach using differential language analysis combined with deep linguistic inquiry. Our method of prompt optimization, tailored to target specific linguistic features, shows significant improvements. Specifically, it enhances the human-likeness of LLM chatbot conversations, increasing their linguistic diversity. On average, we observe a 54 percent reduction in the error of average features between human and LLM-generated conversations. This method of constructing chatbot sets with human-like diversity holds great potential for enhancing the evaluation process of user-facing bots.
Related papers
- HLB: Benchmarking LLMs' Humanlikeness in Language Use [2.438748974410787]
We present a comprehensive humanlikeness benchmark (HLB) evaluating 20 large language models (LLMs)
We collected responses from over 2,000 human participants and compared them to outputs from the LLMs in these experiments.
Our results reveal fine-grained differences in how well LLMs replicate human responses across various linguistic levels.
arXiv Detail & Related papers (2024-09-24T09:02:28Z) - Self-Directed Turing Test for Large Language Models [56.64615470513102]
The Turing test examines whether AIs can exhibit human-like behaviour in natural language conversations.
Traditional Turing tests adopt a rigid dialogue format where each participant sends only one message each time.
This paper proposes the Self-Directed Turing Test, which extends the original test with a burst dialogue format.
arXiv Detail & Related papers (2024-08-19T09:57:28Z) - BotEval: Facilitating Interactive Human Evaluation [21.99269491969255]
BotEval is an evaluation toolkit that enables human-bot interactions as part of the evaluation process.
We develop BotEval, an easily customizable, open-source, evaluation toolkit that focuses on enabling human-bot interactions as part of the evaluation process.
arXiv Detail & Related papers (2024-07-25T04:57:31Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
We propose a goal-oriented, persona-based method to automatically generate diverse multi-turn dialogues simulating human-chatbot interaction.
Our method can simulate human-chatbot dialogues with a high indistinguishability rate.
arXiv Detail & Related papers (2024-07-04T14:49:46Z) - ChatHuman: Language-driven 3D Human Understanding with Retrieval-Augmented Tool Reasoning [57.29285473727107]
ChatHuman is a language-driven human understanding system.
It combines and integrates the skills of many different methods.
ChatHuman is a step towards consolidating diverse methods for human analysis into a single, powerful, system for 3D human reasoning.
arXiv Detail & Related papers (2024-05-07T17:59:31Z) - A Linguistic Comparison between Human and ChatGPT-Generated Conversations [9.022590646680095]
The research employs Linguistic Inquiry and Word Count analysis, comparing ChatGPT-generated conversations with human conversations.
Results show greater variability and authenticity in human dialogues, but ChatGPT excels in categories such as social processes, analytical style, cognition, attentional focus, and positive emotional tone.
arXiv Detail & Related papers (2024-01-29T21:43:27Z) - BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues [72.65163468440434]
This report provides a preliminary evaluation of existing large language models for human-style multi-turn chatting.
We prompt large language models (LLMs) to generate a full multi-turn dialogue based on the ChatSEED, utterance by utterance.
We find GPT-4 can generate human-style multi-turn dialogues with impressive quality, significantly outperforms its counterparts.
arXiv Detail & Related papers (2023-10-20T16:53:51Z) - Evaluating Human-Language Model Interaction [79.33022878034627]
We develop a new framework, Human-AI Language-based Interaction Evaluation (HALIE), that defines the components of interactive systems.
We design five tasks to cover different forms of interaction: social dialogue, question answering, crossword puzzles, summarization, and metaphor generation.
We find that better non-interactive performance does not always translate to better human-LM interaction.
arXiv Detail & Related papers (2022-12-19T18:59:45Z) - Estimating Subjective Crowd-Evaluations as an Additional Objective to
Improve Natural Language Generation [0.0]
We use a crowd-authored dialogue corpus to fine-tune six different language generation models.
Two of these models incorporate multi-task learning and use subjective ratings of lines as part of an explicit learning goal.
A human evaluation of the generated dialogue lines reveals that utterances generated by the multi-tasking models were subjectively rated as the most typical, most moving the conversation forward, and least offensive.
arXiv Detail & Related papers (2021-04-12T06:33:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.