FBD-SV-2024: Flying Bird Object Detection Dataset in Surveillance Video
- URL: http://arxiv.org/abs/2409.00317v1
- Date: Sat, 31 Aug 2024 01:11:57 GMT
- Title: FBD-SV-2024: Flying Bird Object Detection Dataset in Surveillance Video
- Authors: Zi-Wei Sun, Ze-Xi Hua, Heng-Chao Li, Zhi-Peng Qi, Xiang Li, Yan Li, Jin-Chi Zhang,
- Abstract summary: This dataset comprises 483 video clips, amounting to 28,694 frames in total.
Among them, 23,833 frames contain 28,366 instances of flying birds.
- Score: 11.776652825866648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Flying Bird Dataset for Surveillance Videos (FBD-SV-2024) is introduced and tailored for the development and performance evaluation of flying bird detection algorithms in surveillance videos. This dataset comprises 483 video clips, amounting to 28,694 frames in total. Among them, 23,833 frames contain 28,366 instances of flying birds. The proposed dataset of flying birds in surveillance videos is collected from realistic surveillance scenarios, where the birds exhibit characteristics such as inconspicuous features in single frames (in some instances), generally small sizes, and shape variability during flight. These attributes pose challenges that need to be addressed when developing flying bird detection methods for surveillance videos. Finally, advanced (video) object detection algorithms were selected for experimentation on the proposed dataset, and the results demonstrated that this dataset remains challenging for the algorithms above. The FBD-SV-2024 is now publicly available: Please visit https://github.com/Ziwei89/FBD-SV-2024_github for the dataset download link and related processing scripts.
Related papers
- A Flying Bird Object Detection Method for Surveillance Video [9.597393200515377]
This paper proposes a Flying Bird Object Detection method for Surveillance Video (FBOD-SV)
The FBOD-SV is validated using experimental datasets of flying bird objects in traction substation surveillance videos.
The experimental results show that the FBOD-SV effectively improves the detection performance of flying bird objects in surveillance video.
arXiv Detail & Related papers (2024-01-08T09:20:46Z) - Multiview Aerial Visual Recognition (MAVREC): Can Multi-view Improve
Aerial Visual Perception? [57.77643186237265]
We present Multiview Aerial Visual RECognition or MAVREC, a video dataset where we record synchronized scenes from different perspectives.
MAVREC consists of around 2.5 hours of industry-standard 2.7K resolution video sequences, more than 0.5 million frames, and 1.1 million annotated bounding boxes.
This makes MAVREC the largest ground and aerial-view dataset, and the fourth largest among all drone-based datasets.
arXiv Detail & Related papers (2023-12-07T18:59:14Z) - Ground-to-Aerial Person Search: Benchmark Dataset and Approach [42.54151390290665]
We construct a large-scale dataset for Ground-to-Aerial Person Search, named G2APS.
G2APS contains 31,770 images of 260,559 annotated bounding boxes for 2,644 identities appearing in both of the UAVs and ground surveillance cameras.
arXiv Detail & Related papers (2023-08-24T11:11:26Z) - AVOIDDS: Aircraft Vision-based Intruder Detection Dataset and Simulator [37.579437595742995]
We introduce AVOIDDS, a realistic object detection benchmark for the vision-based aircraft detect-and-avoid problem.
We provide a labeled dataset consisting of 72,000 photorealistic images of intruder aircraft with various lighting conditions.
We also provide an interface that evaluates trained models on slices of this dataset to identify changes in performance with respect to changing environmental conditions.
arXiv Detail & Related papers (2023-06-19T23:58:07Z) - Flying Bird Object Detection Algorithm in Surveillance Video Based on
Motion Information [0.0]
The size of the object is small (low Signal-to-Noise Ratio (SNR)) in surveillance video.
An object tracking algorithm is used to track suspicious flying bird objects and calculate their Motion Range (MR)
At the same time, the size of the MR of the suspicious flying bird object is adjusted adaptively according to its speed of movement.
A LightWeight U-Shape Net (LW-USN) based on ASt-Cubes is designed to detect flying bird objects.
arXiv Detail & Related papers (2023-01-05T05:32:22Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2 (AV2) is a collection of three datasets for perception and forecasting research in the self-driving domain.
The Lidar dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose.
The Motion Forecasting dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene.
arXiv Detail & Related papers (2023-01-02T00:36:22Z) - Anomaly Detection in Aerial Videos with Transformers [49.011385492802674]
We create a new dataset, named DroneAnomaly, for anomaly detection in aerial videos.
There are 87,488 color video frames (51,635 for training and 35,853 for testing) with the size of $640 times 640$ at 30 frames per second.
We present a new baseline model, ANomaly Detection with Transformers (ANDT), which treats consecutive video frames as a sequence of tubelets.
arXiv Detail & Related papers (2022-09-25T21:24:18Z) - Shot boundary detection method based on a new extensive dataset and
mixed features [68.8204255655161]
Shot boundary detection in video is one of the key stages of video data processing.
New method for shot boundary detection based on several video features, such as color histograms and object boundaries, has been proposed.
arXiv Detail & Related papers (2021-09-02T16:19:24Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z) - AU-AIR: A Multi-modal Unmanned Aerial Vehicle Dataset for Low Altitude
Traffic Surveillance [20.318367304051176]
Unmanned aerial vehicles (UAVs) with mounted cameras have the advantage of capturing aerial (bird-view) images.
Several aerial datasets have been introduced, including visual data with object annotations.
We propose a multi-purpose aerial dataset (AU-AIR) that has multi-modal sensor data collected in real-world outdoor environments.
arXiv Detail & Related papers (2020-01-31T09:45:12Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
This paper presents a review of object detection and tracking datasets and benchmarks, and discusses the challenges of collecting large-scale drone-based object detection and tracking datasets with manual annotations.
We describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South.
We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions.
arXiv Detail & Related papers (2020-01-16T00:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.