EgoHDM: An Online Egocentric-Inertial Human Motion Capture, Localization, and Dense Mapping System
- URL: http://arxiv.org/abs/2409.00343v2
- Date: Thu, 5 Sep 2024 11:58:51 GMT
- Title: EgoHDM: An Online Egocentric-Inertial Human Motion Capture, Localization, and Dense Mapping System
- Authors: Bonan Liu, Handi Yin, Manuel Kaufmann, Jinhao He, Sammy Christen, Jie Song, Pan Hui,
- Abstract summary: We present EgoHDM, an online egocentric-inertial human motion capture (mocap), localization, and dense mapping system.
Our system uses 6 inertial measurement units (IMUs) and a commodity head-mounted RGB camera.
- Score: 11.89252820871709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present EgoHDM, an online egocentric-inertial human motion capture (mocap), localization, and dense mapping system. Our system uses 6 inertial measurement units (IMUs) and a commodity head-mounted RGB camera. EgoHDM is the first human mocap system that offers dense scene mapping in near real-time. Further, it is fast and robust to initialize and fully closes the loop between physically plausible map-aware global human motion estimation and mocap-aware 3D scene reconstruction. Our key idea is integrating camera localization and mapping information with inertial human motion capture bidirectionally in our system. To achieve this, we design a tightly coupled mocap-aware dense bundle adjustment and physics-based body pose correction module leveraging a local body-centric elevation map. The latter introduces a novel terrain-aware contact PD controller, which enables characters to physically contact the given local elevation map thereby reducing human floating or penetration. We demonstrate the performance of our system on established synthetic and real-world benchmarks. The results show that our method reduces human localization, camera pose, and mapping accuracy error by 41%, 71%, 46%, respectively, compared to the state of the art. Our qualitative evaluations on newly captured data further demonstrate that EgoHDM can cover challenging scenarios in non-flat terrain including stepping over stairs and outdoor scenes in the wild.
Related papers
- Reconstructing People, Places, and Cameras [57.81696692335401]
"Humans and Structure from Motion" (HSfM) is a method for jointly reconstructing multiple human meshes, scene point clouds, and camera parameters in a metric world coordinate system.
Our results show that incorporating human data into the SfM pipeline improves camera pose estimation.
arXiv Detail & Related papers (2024-12-23T18:58:34Z) - Dyn-HaMR: Recovering 4D Interacting Hand Motion from a Dynamic Camera [49.82535393220003]
Dyn-HaMR is the first approach to reconstruct 4D global hand motion from monocular videos recorded by dynamic cameras in the wild.
We show that our approach significantly outperforms state-of-the-art methods in terms of 4D global mesh recovery.
This establishes a new benchmark for hand motion reconstruction from monocular video with moving cameras.
arXiv Detail & Related papers (2024-12-17T12:43:10Z) - Motion Diffusion-Guided 3D Global HMR from a Dynamic Camera [3.6948631725065355]
We present DiffOpt, a novel 3D global HMR method using Diffusion Optimization.
Our key insight is that recent advances in human motion generation, such as the motion diffusion model (MDM), contain a strong prior of coherent human motion.
We validate DiffOpt with video sequences from the Electromagnetic Database of Global 3D Human Pose and Shape in the Wild.
arXiv Detail & Related papers (2024-11-15T21:09:40Z) - EgoLocate: Real-time Motion Capture, Localization, and Mapping with
Sparse Body-mounted Sensors [74.1275051763006]
We develop a system that simultaneously performs human motion capture (mocap), localization, and mapping in real time from sparse body-mounted sensors.
Our technique is largely improved by our technique, compared with the state of the art of the two fields.
arXiv Detail & Related papers (2023-05-02T16:56:53Z) - Scene-aware Egocentric 3D Human Pose Estimation [72.57527706631964]
Egocentric 3D human pose estimation with a single head-mounted fisheye camera has recently attracted attention due to its numerous applications in virtual and augmented reality.
Existing methods still struggle in challenging poses where the human body is highly occluded or is closely interacting with the scene.
We propose a scene-aware egocentric pose estimation method that guides the prediction of the egocentric pose with scene constraints.
arXiv Detail & Related papers (2022-12-20T21:35:39Z) - Egocentric Activity Recognition and Localization on a 3D Map [94.30708825896727]
We address the problem of jointly recognizing and localizing actions of a mobile user on a known 3D map from egocentric videos.
Our model takes the inputs of a Hierarchical Volumetric Representation (HVR) of the environment and an egocentric video, infers the 3D action location as a latent variable, and recognizes the action based on the video and contextual cues surrounding its potential locations.
arXiv Detail & Related papers (2021-05-20T06:58:15Z) - Human POSEitioning System (HPS): 3D Human Pose Estimation and
Self-localization in Large Scenes from Body-Mounted Sensors [71.29186299435423]
We introduce (HPS) Human POSEitioning System, a method to recover the full 3D pose of a human registered with a 3D scan of the surrounding environment.
We show that our optimization-based integration exploits the benefits of the two, resulting in pose accuracy free of drift.
HPS could be used for VR/AR applications where humans interact with the scene without requiring direct line of sight with an external camera.
arXiv Detail & Related papers (2021-03-31T17:58:31Z) - 4D Human Body Capture from Egocentric Video via 3D Scene Grounding [38.3169520384642]
We introduce a novel task of reconstructing a time series of second-person 3D human body meshes from monocular egocentric videos.
The unique viewpoint and rapid embodied camera motion of egocentric videos raise additional technical barriers for human body capture.
arXiv Detail & Related papers (2020-11-26T15:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.