Chatting Up Attachment: Using LLMs to Predict Adult Bonds
- URL: http://arxiv.org/abs/2409.00347v1
- Date: Sat, 31 Aug 2024 04:29:19 GMT
- Title: Chatting Up Attachment: Using LLMs to Predict Adult Bonds
- Authors: Paulo Soares, Sean McCurdy, Andrew J. Gerber, Peter Fonagy,
- Abstract summary: We use GPT-4 and Claude 3 Opus to create agents that simulate adults with varying profiles, childhood memories, and attachment styles.
We evaluate our models using a transcript dataset from 9 humans who underwent the same interview protocol, analyzed and labeled by mental health professionals.
Our findings indicate that training the models using only synthetic data achieves performance comparable to training the models on human data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining data in the medical field is challenging, making the adoption of AI technology within the space slow and high-risk. We evaluate whether we can overcome this obstacle with synthetic data generated by large language models (LLMs). In particular, we use GPT-4 and Claude 3 Opus to create agents that simulate adults with varying profiles, childhood memories, and attachment styles. These agents participate in simulated Adult Attachment Interviews (AAI), and we use their responses to train models for predicting their underlying attachment styles. We evaluate our models using a transcript dataset from 9 humans who underwent the same interview protocol, analyzed and labeled by mental health professionals. Our findings indicate that training the models using only synthetic data achieves performance comparable to training the models on human data. Additionally, while the raw embeddings from synthetic answers occupy a distinct space compared to those from real human responses, the introduction of unlabeled human data and a simple standardization allows for a closer alignment of these representations. This adjustment is supported by qualitative analyses and is reflected in the enhanced predictive accuracy of the standardized embeddings.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Can Medical Vision-Language Pre-training Succeed with Purely Synthetic Data? [8.775988650381397]
Training medical vision-language pre-training models requires datasets with paired, high-quality image-text data.
Recent advancements in Large Language Models have made it possible to generate large-scale synthetic image-text pairs.
We propose an automated pipeline to build a diverse, high-quality synthetic dataset.
arXiv Detail & Related papers (2024-10-17T13:11:07Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - Zero-shot and Few-shot Generation Strategies for Artificial Clinical Records [1.338174941551702]
This study assesses the capability of the Llama 2 LLM to create synthetic medical records that accurately reflect real patient information.
We focus on generating synthetic narratives for the History of Present Illness section, utilising data from the MIMIC-IV dataset for comparison.
Our findings suggest that this chain-of-thought prompted approach allows the zero-shot model to achieve results on par with those of fine-tuned models, based on Rouge metrics evaluation.
arXiv Detail & Related papers (2024-03-13T16:17:09Z) - Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [115.501751261878]
Fine-tuning language models(LMs) on human-generated data remains a prevalent practice.
We investigate whether we can go beyond human data on tasks where we have access to scalar feedback.
We find that ReST$EM$ scales favorably with model size and significantly surpasses fine-tuning only on human data.
arXiv Detail & Related papers (2023-12-11T18:17:43Z) - Learning Human Action Recognition Representations Without Real Humans [66.61527869763819]
We present a benchmark that leverages real-world videos with humans removed and synthetic data containing virtual humans to pre-train a model.
We then evaluate the transferability of the representation learned on this data to a diverse set of downstream action recognition benchmarks.
Our approach outperforms previous baselines by up to 5%.
arXiv Detail & Related papers (2023-11-10T18:38:14Z) - How Good Are Synthetic Medical Images? An Empirical Study with Lung
Ultrasound [0.3312417881789094]
Adding synthetic training data using generative models offers a low-cost method to deal with the data scarcity challenge.
We show that training with both synthetic and real data outperforms training with real data alone.
arXiv Detail & Related papers (2023-10-05T15:42:53Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - An Analysis of the Deployment of Models Trained on Private Tabular
Synthetic Data: Unexpected Surprises [4.129847064263057]
Diferentially private (DP) synthetic datasets are a powerful approach for training machine learning models.
We study the effects of differentially private synthetic data generation on classification.
arXiv Detail & Related papers (2021-06-15T21:00:57Z) - On the Efficacy of Adversarial Data Collection for Question Answering:
Results from a Large-Scale Randomized Study [65.17429512679695]
In adversarial data collection (ADC), a human workforce interacts with a model in real time, attempting to produce examples that elicit incorrect predictions.
Despite ADC's intuitive appeal, it remains unclear when training on adversarial datasets produces more robust models.
arXiv Detail & Related papers (2021-06-02T00:48:33Z) - Improving Question Answering Model Robustness with Synthetic Adversarial
Data Generation [41.9785159975426]
State-of-the-art question answering models remain susceptible to a variety of adversarial attacks and are still far from obtaining human-level language understanding.
One proposed way forward is dynamic adversarial data collection, in which a human annotator attempts to create examples for which a model-in-the-loop fails.
In this work, we investigate several answer selection, question generation, and filtering methods that form a synthetic adversarial data generation pipeline.
Models trained on both synthetic and human-generated data outperform models not trained on synthetic adversarial data, and obtain state-of-the-art results on the Adversarial
arXiv Detail & Related papers (2021-04-18T02:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.