COSMo: CLIP Talks on Open-Set Multi-Target Domain Adaptation
- URL: http://arxiv.org/abs/2409.00397v1
- Date: Sat, 31 Aug 2024 09:14:54 GMT
- Title: COSMo: CLIP Talks on Open-Set Multi-Target Domain Adaptation
- Authors: Munish Monga, Sachin Kumar Giroh, Ankit Jha, Mainak Singha, Biplab Banerjee, Jocelyn Chanussot,
- Abstract summary: Multi-Target Domain Adaptation involves learning domain-invariant information from a single source domain and applying it to multiple unlabeled target domains.
This paper introduces COSMo, a novel method that learns domain-agnostic prompts through source domain-guided prompt learning.
To the best of our knowledge, COSMo is the first method to address Open-Set Multi-Target DA.
- Score: 24.46473228191582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Target Domain Adaptation (MTDA) entails learning domain-invariant information from a single source domain and applying it to multiple unlabeled target domains. Yet, existing MTDA methods predominantly focus on addressing domain shifts within visual features, often overlooking semantic features and struggling to handle unknown classes, resulting in what is known as Open-Set (OS) MTDA. While large-scale vision-language foundation models like CLIP show promise, their potential for MTDA remains largely unexplored. This paper introduces COSMo, a novel method that learns domain-agnostic prompts through source domain-guided prompt learning to tackle the MTDA problem in the prompt space. By leveraging a domain-specific bias network and separate prompts for known and unknown classes, COSMo effectively adapts across domain and class shifts. To the best of our knowledge, COSMo is the first method to address Open-Set Multi-Target DA (OSMTDA), offering a more realistic representation of real-world scenarios and addressing the challenges of both open-set and multi-target DA. COSMo demonstrates an average improvement of $5.1\%$ across three challenging datasets: Mini-DomainNet, Office-31, and Office-Home, compared to other related DA methods adapted to operate within the OSMTDA setting. Code is available at: https://github.com/munish30monga/COSMo
Related papers
- More is Better: Deep Domain Adaptation with Multiple Sources [34.26271755493111]
Multi-source domain adaptation (MDA) is a powerful and practical extension in which the labeled data may be collected from multiple sources with different distributions.
In this survey, we first define various MDA strategies. Then we systematically summarize and compare modern MDA methods in the deep learning era from different perspectives.
arXiv Detail & Related papers (2024-05-01T03:37:12Z) - Multi-Modal Cross-Domain Alignment Network for Video Moment Retrieval [55.122020263319634]
Video moment retrieval (VMR) aims to localize the target moment from an untrimmed video according to a given language query.
In this paper, we focus on a novel task: cross-domain VMR, where fully-annotated datasets are available in one domain but the domain of interest only contains unannotated datasets.
We propose a novel Multi-Modal Cross-Domain Alignment network to transfer the annotation knowledge from the source domain to the target domain.
arXiv Detail & Related papers (2022-09-23T12:58:20Z) - Multi-Head Distillation for Continual Unsupervised Domain Adaptation in
Semantic Segmentation [38.10483890861357]
This work focuses on a novel framework for learning UDA, continuous UDA, in which models operate on multiple target domains discovered sequentially.
We propose MuHDi, for Multi-Head Distillation, a method that solves the catastrophic forgetting problem, inherent in continual learning tasks.
arXiv Detail & Related papers (2022-04-25T14:03:09Z) - Discover, Hallucinate, and Adapt: Open Compound Domain Adaptation for
Semantic Segmentation [91.30558794056056]
Unsupervised domain adaptation (UDA) for semantic segmentation has been attracting attention recently.
We present a novel framework based on three main design principles: discover, hallucinate, and adapt.
We evaluate our solution on standard benchmark GTA to C-driving, and achieved new state-of-the-art results.
arXiv Detail & Related papers (2021-10-08T13:20:09Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
We propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework.
In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-07-17T07:52:44Z) - Unsupervised Multi-Target Domain Adaptation Through Knowledge
Distillation [14.088776449829345]
Unsupervised domain adaptation (UDA) seeks to alleviate the problem of domain shift between the distribution of unlabeled data.
In this paper, we propose a novel unsupervised MTDA approach to train a CNN that can generalize well across multiple target domains.
arXiv Detail & Related papers (2020-07-14T14:59:45Z) - Mind the Gap: Enlarging the Domain Gap in Open Set Domain Adaptation [65.38975706997088]
Open set domain adaptation (OSDA) assumes the presence of unknown classes in the target domain.
We show that existing state-of-the-art methods suffer a considerable performance drop in the presence of larger domain gaps.
We propose a novel framework to specifically address the larger domain gaps.
arXiv Detail & Related papers (2020-03-08T14:20:24Z) - Multi-source Domain Adaptation in the Deep Learning Era: A Systematic
Survey [53.656086832255944]
Multi-source domain adaptation (MDA) is a powerful extension in which the labeled data may be collected from multiple sources.
MDA has attracted increasing attention in both academia and industry.
arXiv Detail & Related papers (2020-02-26T08:07:58Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain.
Recent multi-source domain adaptation (MDA) methods do not consider the pixel-level alignment between sources and target.
We propose a novel MDA framework to address these challenges.
arXiv Detail & Related papers (2020-02-19T21:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.