Spatio-spectral graph neural operator for solving computational mechanics problems on irregular domain and unstructured grid
- URL: http://arxiv.org/abs/2409.00604v1
- Date: Sun, 1 Sep 2024 03:59:40 GMT
- Title: Spatio-spectral graph neural operator for solving computational mechanics problems on irregular domain and unstructured grid
- Authors: Subhankar Sarkar, Souvik Chakraborty,
- Abstract summary: We introduce Spatio-Spectral Graph Neural Operator (Sp$2$GNO) that integrates spatial and spectral GNNs effectively.
This framework mitigates the limitations of individual methods and enables the learning of solution operators across arbitrary geometries.
- Score: 0.9208007322096533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scientific machine learning has seen significant progress with the emergence of operator learning. However, existing methods encounter difficulties when applied to problems on unstructured grids and irregular domains. Spatial graph neural networks utilize local convolution in a neighborhood to potentially address these challenges, yet they often suffer from issues such as over-smoothing and over-squashing in deep architectures. Conversely, spectral graph neural networks leverage global convolution to capture extensive features and long-range dependencies in domain graphs, albeit at a high computational cost due to Eigenvalue decomposition. In this paper, we introduce a novel approach, referred to as Spatio-Spectral Graph Neural Operator (Sp$^2$GNO) that integrates spatial and spectral GNNs effectively. This framework mitigates the limitations of individual methods and enables the learning of solution operators across arbitrary geometries, thus catering to a wide range of real-world problems. Sp$^2$GNO demonstrates exceptional performance in solving both time-dependent and time-independent partial differential equations on regular and irregular domains. Our approach is validated through comprehensive benchmarks and practical applications drawn from computational mechanics and scientific computing literature.
Related papers
- On the Generalization Capability of Temporal Graph Learning Algorithms:
Theoretical Insights and a Simpler Method [59.52204415829695]
Temporal Graph Learning (TGL) has become a prevalent technique across diverse real-world applications.
This paper investigates the generalization ability of different TGL algorithms.
We propose a simplified TGL network, which enjoys a small generalization error, improved overall performance, and lower model complexity.
arXiv Detail & Related papers (2024-02-26T08:22:22Z) - A Novel Differentiable Loss Function for Unsupervised Graph Neural
Networks in Graph Partitioning [5.22145960878624]
The graph partitioning problem is recognized as an NP-hard prob-lem.
We introduce a novel pipeline employing an unsupervised graph neural network to solve the graph partitioning problem.
We rigor-ously evaluate our methodology against contemporary state-of-the-art tech-niques, focusing on metrics: cuts and balance, and our findings reveal that our is competitive with these leading methods.
arXiv Detail & Related papers (2023-12-11T23:03:17Z) - Operator Learning with Neural Fields: Tackling PDEs on General
Geometries [15.65577053925333]
Machine learning approaches for solving partial differential equations require learning mappings between function spaces.
New CORAL method leverages coordinate-based networks for PDEs on some general constraints.
arXiv Detail & Related papers (2023-06-12T17:52:39Z) - GNN-based physics solver for time-independent PDEs [1.7616042687330642]
Time-independent problems pose the challenge of requiring long-range exchange of information across the computational domain for obtaining accurate predictions.
We present two graph neural networks (GNNs) to overcome this challenge - the Edge Augmented GNN and the Multi-GNN.
We show that both these networks perform significantly better (by a factor of 1.5 to 2) than baseline methods when applied to time-independent solid mechanics problems.
arXiv Detail & Related papers (2023-03-28T02:04:43Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Tensor Networks for Multi-Modal Non-Euclidean Data [24.50116388903113]
We introduce a novel Multi-Graph Network (MGTN) framework, which leverages on the desirable properties of graphs, tensors and neural networks in a physically meaningful and compact manner.
This equips MGTNs with the ability to exploit local information in irregular data sources at a drastically reduced parameter complexity.
The benefits of the MGTN framework, especially its ability to avoid overfitting through the inherent low-rank regularization properties of tensor networks, are demonstrated.
arXiv Detail & Related papers (2021-03-27T21:33:46Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.