MARS: Matching Attribute-aware Representations for Text-based Sequential Recommendation
- URL: http://arxiv.org/abs/2409.00702v2
- Date: Wed, 04 Sep 2024 13:19:42 GMT
- Title: MARS: Matching Attribute-aware Representations for Text-based Sequential Recommendation
- Authors: Hyunsoo Kim, Junyoung Kim, Minjin Choi, Sunkyung Lee, Jongwuk Lee,
- Abstract summary: We propose a novel model, Matching Attribute-aware Representations for Text-based Sequential Recommendation (MARS)
MARS extracts detailed user and item representations through attribute-aware text encoding, capturing diverse user intents with multiple attribute-aware representations.
It then computes user-item scores via attribute-wise interaction matching, effectively capturing attribute-level user preferences.
- Score: 11.460164505052981
- License:
- Abstract: Sequential recommendation aims to predict the next item a user is likely to prefer based on their sequential interaction history. Recently, text-based sequential recommendation has emerged as a promising paradigm that uses pre-trained language models to exploit textual item features to enhance performance and facilitate knowledge transfer to unseen datasets. However, existing text-based recommender models still struggle with two key challenges: (i) representing users and items with multiple attributes, and (ii) matching items with complex user interests. To address these challenges, we propose a novel model, Matching Attribute-aware Representations for Text-based Sequential Recommendation (MARS). MARS extracts detailed user and item representations through attribute-aware text encoding, capturing diverse user intents with multiple attribute-aware representations. It then computes user-item scores via attribute-wise interaction matching, effectively capturing attribute-level user preferences. Our extensive experiments demonstrate that MARS significantly outperforms existing sequential models, achieving improvements of up to 24.43% and 29.26% in Recall@10 and NDCG@10 across five benchmark datasets. Code is available at https://github.com/junieberry/MARS
Related papers
- FineRec:Exploring Fine-grained Sequential Recommendation [28.27273649170967]
We propose a novel framework that explores the attribute-opinion pairs of reviews to finely handle sequential recommendation.
For each attribute, a unique attribute-specific user-opinion-item graph is created, where corresponding opinions serve as the edges linking heterogeneous user and item nodes.
We present an interaction-driven fusion mechanism to integrate attribute-specific user/item representations across all attributes for generating recommendations.
arXiv Detail & Related papers (2024-04-19T16:04:26Z) - Multi-Intent Attribute-Aware Text Matching in Searching [21.92265431319774]
We propose a multi-intent attribute-aware matching model (MIM), which consists of three main components: attribute-aware encoder, multi-intent modeling, and intent-aware matching.
In the MIM, the text and attributes are weighted and processed through a scaled attention mechanism with regard to the attributes' importance.
In the intent-aware matching, the intents are evaluated by a self-supervised masking task, and then incorporated to output the final matching result.
arXiv Detail & Related papers (2024-02-12T16:54:22Z) - Enhancing User Intent Capture in Session-Based Recommendation with
Attribute Patterns [77.19390850643944]
We propose the Frequent Attribute Pattern Augmented Transformer (FAPAT)
FAPAT characterizes user intents by building attribute transition graphs and matching attribute patterns.
We demonstrate that FAPAT consistently outperforms state-of-the-art methods by an average of 4.5% across various evaluation metrics.
arXiv Detail & Related papers (2023-12-23T03:28:18Z) - JPAVE: A Generation and Classification-based Model for Joint Product
Attribute Prediction and Value Extraction [59.94977231327573]
We propose a multi-task learning model with value generation/classification and attribute prediction called JPAVE.
Two variants of our model are designed for open-world and closed-world scenarios.
Experimental results on a public dataset demonstrate the superiority of our model compared with strong baselines.
arXiv Detail & Related papers (2023-11-07T18:36:16Z) - Text Matching Improves Sequential Recommendation by Reducing Popularity
Biases [48.272381505993366]
TASTE verbalizes items and user-item interactions using identifiers and attributes of items.
Our experiments show that TASTE outperforms the state-of-the-art methods on widely used sequential recommendation datasets.
arXiv Detail & Related papers (2023-08-27T07:44:33Z) - Recommender Systems with Generative Retrieval [58.454606442670034]
We propose a novel generative retrieval approach, where the retrieval model autoregressively decodes the identifiers of the target candidates.
To that end, we create semantically meaningful of codewords to serve as a Semantic ID for each item.
We show that recommender systems trained with the proposed paradigm significantly outperform the current SOTA models on various datasets.
arXiv Detail & Related papers (2023-05-08T21:48:17Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
We present TalkWalk, which generates realistic high-quality conversational data by leveraging encoded expertise in widely available item collections.
We generate over one million diverse conversations in a human-collected dataset.
arXiv Detail & Related papers (2023-01-27T01:54:16Z) - Joint Item Recommendation and Attribute Inference: An Adaptive Graph
Convolutional Network Approach [61.2786065744784]
In recommender systems, users and items are associated with attributes, and users show preferences to items.
As annotating user (item) attributes is a labor intensive task, the attribute values are often incomplete with many missing attribute values.
We propose an Adaptive Graph Convolutional Network (AGCN) approach for joint item recommendation and attribute inference.
arXiv Detail & Related papers (2020-05-25T10:50:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.