From Bird's-Eye to Street View: Crafting Diverse and Condition-Aligned Images with Latent Diffusion Model
- URL: http://arxiv.org/abs/2409.01014v1
- Date: Mon, 2 Sep 2024 07:47:16 GMT
- Title: From Bird's-Eye to Street View: Crafting Diverse and Condition-Aligned Images with Latent Diffusion Model
- Authors: Xiaojie Xu, Tianshuo Xu, Fulong Ma, Yingcong Chen,
- Abstract summary: We explore Bird's-Eye View generation, converting a BEV map into its corresponding multi-view street images.
Our approach comprises two main components: the Neural View Transformation and the Street Image Generation.
- Score: 16.716345249091408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore Bird's-Eye View (BEV) generation, converting a BEV map into its corresponding multi-view street images. Valued for its unified spatial representation aiding multi-sensor fusion, BEV is pivotal for various autonomous driving applications. Creating accurate street-view images from BEV maps is essential for portraying complex traffic scenarios and enhancing driving algorithms. Concurrently, diffusion-based conditional image generation models have demonstrated remarkable outcomes, adept at producing diverse, high-quality, and condition-aligned results. Nonetheless, the training of these models demands substantial data and computational resources. Hence, exploring methods to fine-tune these advanced models, like Stable Diffusion, for specific conditional generation tasks emerges as a promising avenue. In this paper, we introduce a practical framework for generating images from a BEV layout. Our approach comprises two main components: the Neural View Transformation and the Street Image Generation. The Neural View Transformation phase converts the BEV map into aligned multi-view semantic segmentation maps by learning the shape correspondence between the BEV and perspective views. Subsequently, the Street Image Generation phase utilizes these segmentations as a condition to guide a fine-tuned latent diffusion model. This finetuning process ensures both view and style consistency. Our model leverages the generative capacity of large pretrained diffusion models within traffic contexts, effectively yielding diverse and condition-coherent street view images.
Related papers
- Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - SkyDiffusion: Street-to-Satellite Image Synthesis with Diffusion Models and BEV Paradigm [12.818880200888504]
We introduce SkyDiffusion, a novel cross-view generation method for synthesizing satellite images from street-view images.
We show that SkyDiffusion outperforms state-of-the-art methods on both suburban (CVUSA & CVACT) and urban cross-view datasets.
arXiv Detail & Related papers (2024-08-03T15:43:56Z) - FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets.
We leverage different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation.
Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets.
arXiv Detail & Related papers (2024-03-29T10:38:25Z) - FB-BEV: BEV Representation from Forward-Backward View Transformations [131.11787050205697]
We propose a novel View Transformation Module (VTM) for Bird-Eye-View (BEV) representation.
We instantiate the proposed module with FB-BEV, which achieves a new state-of-the-art result of 62.4% NDS on the nuScenes test set.
arXiv Detail & Related papers (2023-08-04T10:26:55Z) - LayoutDiffuse: Adapting Foundational Diffusion Models for
Layout-to-Image Generation [24.694298869398033]
Our method trains efficiently, generates images with both high perceptual quality and layout alignment.
Our method significantly outperforms other 10 generative models based on GANs, VQ-VAE, and diffusion models.
arXiv Detail & Related papers (2023-02-16T14:20:25Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
Bird's-Eye View (BEV) Perception has received increasing attention in recent years.
Data-driven simulation for autonomous driving has been a focal point of recent research.
We propose BEVGen, a conditional generative model that synthesizes realistic and spatially consistent surrounding images.
arXiv Detail & Related papers (2023-01-11T18:39:34Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
We present a novel framework that reconstructs a local map formed by road layout and vehicle occupancy in the bird's-eye view.
Our model runs at 25 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.
arXiv Detail & Related papers (2022-11-15T13:52:41Z) - ViT-BEVSeg: A Hierarchical Transformer Network for Monocular
Birds-Eye-View Segmentation [2.70519393940262]
We evaluate the use of vision transformers (ViT) as a backbone architecture to generate Bird Eye View (BEV) maps.
Our network architecture, ViT-BEVSeg, employs standard vision transformers to generate a multi-scale representation of the input image.
We evaluate our approach on the nuScenes dataset demonstrating a considerable improvement relative to state-of-the-art approaches.
arXiv Detail & Related papers (2022-05-31T10:18:36Z) - ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for
Image Recognition and Beyond [76.35955924137986]
We propose a Vision Transformer Advanced by Exploring intrinsic IB from convolutions, i.e., ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
We obtain the state-of-the-art classification performance, i.e., 88.5% Top-1 classification accuracy on ImageNet validation set and the best 91.2% Top-1 accuracy on ImageNet real validation set.
arXiv Detail & Related papers (2022-02-21T10:40:05Z) - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View
Images [4.449481309681663]
We present the first end-to-end learning approach for directly predicting dense panoptic segmentation maps in the Bird's-Eye-View (BEV) maps.
Our architecture follows the top-down paradigm and incorporates a novel dense transformer module.
We derive a mathematical formulation for the sensitivity of the FV-BEV transformation which allows us to intelligently weight pixels in the BEV space.
arXiv Detail & Related papers (2021-08-06T17:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.