Assessing the Impact of Image Dataset Features on Privacy-Preserving Machine Learning
- URL: http://arxiv.org/abs/2409.01329v1
- Date: Mon, 2 Sep 2024 15:30:27 GMT
- Title: Assessing the Impact of Image Dataset Features on Privacy-Preserving Machine Learning
- Authors: Lucas Lange, Maurice-Maximilian Heykeroth, Erhard Rahm,
- Abstract summary: This study identifies image dataset characteristics that affect the utility and vulnerability of private and non-private Convolutional Neural Network (CNN) models.
We find that imbalanced datasets increase vulnerability in minority classes, but DP mitigates this issue.
- Score: 1.3604778572442302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) is crucial in many sectors, including computer vision. However, ML models trained on sensitive data face security challenges, as they can be attacked and leak information. Privacy-Preserving Machine Learning (PPML) addresses this by using Differential Privacy (DP) to balance utility and privacy. This study identifies image dataset characteristics that affect the utility and vulnerability of private and non-private Convolutional Neural Network (CNN) models. Through analyzing multiple datasets and privacy budgets, we find that imbalanced datasets increase vulnerability in minority classes, but DP mitigates this issue. Datasets with fewer classes improve both model utility and privacy, while high entropy or low Fisher Discriminant Ratio (FDR) datasets deteriorate the utility-privacy trade-off. These insights offer valuable guidance for practitioners and researchers in estimating and optimizing the utility-privacy trade-off in image datasets, helping to inform data and privacy modifications for better outcomes based on dataset characteristics.
Related papers
- Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning [54.30994558765057]
The study pioneers a comprehensive privacy protection framework that safeguards image data privacy concurrently during data sharing and model publication.
We propose an interactive image privacy protection framework that utilizes generative machine learning models to modify image information at the attribute level.
Within this framework, we instantiate two modules: a differential privacy diffusion model for protecting attribute information in images and a feature unlearning algorithm for efficient updates of the trained model on the revised image dataset.
arXiv Detail & Related papers (2024-09-05T07:55:55Z) - Synergizing Privacy and Utility in Data Analytics Through Advanced Information Theorization [2.28438857884398]
We introduce three sophisticated algorithms: a Noise-Infusion Technique tailored for high-dimensional image data, a Variational Autoencoder (VAE) for robust feature extraction and an Expectation Maximization (EM) approach optimized for structured data privacy.
Our methods significantly reduce mutual information between sensitive attributes and transformed data, thereby enhancing privacy.
The research contributes to the field by providing a flexible and effective strategy for deploying privacy-preserving algorithms across various data types.
arXiv Detail & Related papers (2024-04-24T22:58:42Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.0]
This paper examines the evolving landscape of machine learning (ML) and its profound impact across various sectors.
It focuses on the emerging field of Privacy-preserving Machine Learning (PPML)
As ML applications become increasingly integral to industries like telecommunications, financial technology, and surveillance, they raise significant privacy concerns.
arXiv Detail & Related papers (2024-02-25T17:31:06Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - A Survey on Differential Privacy with Machine Learning and Future
Outlook [0.0]
differential privacy is used to protect machine learning models from any attacks and vulnerabilities.
This survey paper presents different differentially private machine learning algorithms categorized into two main categories.
arXiv Detail & Related papers (2022-11-19T14:20:53Z) - Mixed Differential Privacy in Computer Vision [133.68363478737058]
AdaMix is an adaptive differentially private algorithm for training deep neural network classifiers using both private and public image data.
A few-shot or even zero-shot learning baseline that ignores private data can outperform fine-tuning on a large private dataset.
arXiv Detail & Related papers (2022-03-22T06:15:43Z) - Data privacy protection in microscopic image analysis for material data
mining [8.266759895003279]
In this study, a material microstructure image feature extraction algorithm FedTransfer based on data privacy protection is proposed.
The core contributions are as follows: 1) the federated learning algorithm is introduced into the polycrystalline microstructure image segmentation task to make full use of different user data to carry out machine learning, break the data island and improve the model generalization ability under the condition of ensuring the privacy and security of user data.
By sharing style information of images that is not urgent for user confidentiality, it can reduce the performance penalty caused by the distribution difference of data among different users.
arXiv Detail & Related papers (2021-11-09T11:16:33Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
This paper proposes a framework of Privacy-preserving Credit risk modeling based on Adversarial Learning (PCAL)
PCAL aims to mask the private information inside the original dataset, while maintaining the important utility information for the target prediction task performance.
Results indicate that PCAL can learn an effective, privacy-free representation from user data, providing a solid foundation towards privacy-preserving machine learning for credit risk analysis.
arXiv Detail & Related papers (2020-10-06T07:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.