Quantum State Preparation Circuit Optimization Exploiting Don't Cares
- URL: http://arxiv.org/abs/2409.01418v1
- Date: Mon, 2 Sep 2024 18:40:42 GMT
- Title: Quantum State Preparation Circuit Optimization Exploiting Don't Cares
- Authors: Hanyu Wang, Daniel Bochen Tan, Jason Cong,
- Abstract summary: Quantum state preparation initializes the quantum registers and is essential for running quantum algorithms.
Existing methods synthesize an initial circuit and leverage compilers to reduce the circuit's gate count.
We introduce a peephole optimization algorithm that identifies such unitaries for replacement in the original circuit.
- Score: 6.158168913938158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state preparation initializes the quantum registers and is essential for running quantum algorithms. Designing state preparation circuits that entangle qubits efficiently with fewer two-qubit gates enhances accuracy and alleviates coupling constraints on devices. Existing methods synthesize an initial circuit and leverage compilers to reduce the circuit's gate count while preserving the unitary equivalency. In this study, we identify numerous conditions within the quantum circuit where breaking local unitary equivalences does not alter the overall outcome of the state preparation (i.e., don't cares). We introduce a peephole optimization algorithm that identifies such unitaries for replacement in the original circuit. Exploiting these don't care conditions, our algorithm achieves a 36% reduction in the number of two-qubit gates compared to prior methods.
Related papers
- Quantum Multiplexer Simplification for State Preparation [0.7270112855088837]
We propose an algorithm that detects whether a given quantum state can be factored into substates.
The simplification is done by eliminating controls of quantum multiplexers.
Considering efficiency in terms of depth and number of CNOT gates, our method is competitive with the methods in the literature.
arXiv Detail & Related papers (2024-09-09T13:53:02Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - GASP -- A Genetic Algorithm for State Preparation [0.0]
We present a genetic algorithm for state preparation (GASP) which generates relatively low-depth quantum circuits for initialising a quantum computer in a specified quantum state.
GASP can produce more efficient circuits of a given accuracy with lower depth and gate counts than other methods.
arXiv Detail & Related papers (2023-02-22T04:41:01Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
We introduce AQCtensor, a novel algorithm to produce short-depth quantum circuits from Matrix Product States (MPS)
Our approach is specifically tailored to the preparation of quantum states generated from the time evolution of quantum many-body Hamiltonians.
For simulation problems on 100 qubits, we show that AQCtensor achieves at least an order of magnitude reduction in the depth of the resulting optimized circuit.
arXiv Detail & Related papers (2023-01-20T14:40:29Z) - Qubit-reuse compilation with mid-circuit measurement and reset [0.0]
We introduce the idea of qubit-reuse compilation, which takes as input a quantum circuit and produces as output a compiled circuit.
We show that optimal qubit-reuse compilation requires the same number of qubits to execute a circuit as its dual.
We experimentally realize an 80-qubit QAOA MaxCut circuit on the 20-qubit Quantinuum H1-1 trapped ion quantum processor.
arXiv Detail & Related papers (2022-10-14T18:11:43Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum Gate Pattern Recognition and Circuit Optimization for Scientific
Applications [1.6329956884407544]
We introduce two ideas for circuit optimization and combine them in a multi-tiered quantum circuit optimization protocol called AQCEL.
AQCEL is deployed on an iterative and efficient quantum algorithm designed to model final state radiation in high energy physics.
Our technique is generic and can be useful for a wide variety of quantum algorithms.
arXiv Detail & Related papers (2021-02-19T16:20:31Z) - Efficient Algorithms for Causal Order Discovery in Quantum Networks [44.356294905844834]
Given black-box access to the input and output systems, we develop the first efficient quantum causal order discovery algorithm.
We model the causal order with quantum combs, and our algorithms output the order of inputs and outputs that the given process is compatible with.
Our algorithms will provide efficient ways to detect and optimize available transmission paths in quantum communication networks.
arXiv Detail & Related papers (2020-12-03T07:12:08Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.