Self-Directed Learning of Convex Labelings on Graphs
- URL: http://arxiv.org/abs/2409.01428v1
- Date: Mon, 2 Sep 2024 19:13:26 GMT
- Title: Self-Directed Learning of Convex Labelings on Graphs
- Authors: Georgy Sokolov, Maximilian Thiessen, Margarita Akhmejanova, Fabio Vitale, Francesco Orabona,
- Abstract summary: We study the problem of learning the clusters of a given graph in the self-directed learning setup.
No results previously existed specifically for self-directed node classification on graphs.
- Score: 11.286983359775512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of learning the clusters of a given graph in the self-directed learning setup. This learning setting is a variant of online learning, where rather than an adversary determining the sequence in which nodes are presented, the learner autonomously and adaptively selects them. While self-directed learning of Euclidean halfspaces, linear functions, and general abstract multi-class hypothesis classes was recently considered, no results previously existed specifically for self-directed node classification on graphs. In this paper, we address this problem developing efficient algorithms for it. More specifically, we focus on the case of (geodesically) convex clusters, i.e., for every two nodes sharing the same label, all nodes on every shortest path between them also share the same label. In particular, we devise a polynomial-time algorithm that makes only $3(h(G)+1)^4 \ln n$ mistakes on graphs with two convex clusters, where $n$ is the total number of nodes and $h(G)$ is the Hadwiger number, i.e., the size of the largest clique minor of the graph $G$. We also show that our algorithm is robust to the case that clusters are slightly non-convex, still achieving a mistake bound logarithmic in $n$. Finally, for the more standard case of homophilic clusters, where strongly connected nodes tend to belong the same class, we devise a simple and efficient algorithm.
Related papers
- The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
We introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs.
Our observations show that our framework acts as a versatile operator for diverse tasks.
It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth.
arXiv Detail & Related papers (2024-06-18T12:16:00Z) - Combinatorial Approximations for Cluster Deletion: Simpler, Faster, and Better [18.121514220195607]
Cluster deletion is an NP-hard graph clustering objective with applications in computational and social network analysis.
We first provide a tighter analysis of two previous approximation algorithms, improving their approximation guarantees from 4 to 3.
We show that both algorithms can be derandomized in a surprisingly simple way, by greedily taking a maximum degree in an auxiliary graph and forming a cluster around it.
arXiv Detail & Related papers (2024-04-24T18:39:18Z) - A Differentially Private Clustering Algorithm for Well-Clustered Graphs [6.523602840064548]
We provide an efficient ($epsilon,$delta$)-DP algorithm tailored specifically for such graphs.
Our algorithm works for well-clustered graphs with $k$ nearly-balanced clusters.
arXiv Detail & Related papers (2024-03-21T11:57:16Z) - Latent Random Steps as Relaxations of Max-Cut, Min-Cut, and More [30.919536115917726]
We present a probabilistic model based on non-negative matrix factorization which unifies clustering and simplification.
By relaxing the hard clustering to a soft clustering, our algorithm relaxes potentially hard clustering problems to a tractable ones.
arXiv Detail & Related papers (2023-08-12T02:47:57Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - AnchorGAE: General Data Clustering via $O(n)$ Bipartite Graph
Convolution [79.44066256794187]
We show how to convert a non-graph dataset into a graph by introducing the generative graph model, which is used to build graph convolution networks (GCNs)
A bipartite graph constructed by anchors is updated dynamically to exploit the high-level information behind data.
We theoretically prove that the simple update will lead to degeneration and a specific strategy is accordingly designed.
arXiv Detail & Related papers (2021-11-12T07:08:13Z) - Random Graph Matching with Improved Noise Robustness [2.294014185517203]
We propose a new algorithm for graph matching under probabilistic models.
Our algorithm recovers the underlying matching with high probability when $alpha le 1 / (log log n)C$.
This improves the condition $alpha le 1 / (log n)C$ achieved in previous work.
arXiv Detail & Related papers (2021-01-28T02:39:27Z) - Scalable Deep Generative Modeling for Sparse Graphs [105.60961114312686]
Existing deep neural methods require $Omega(n2)$ complexity by building up the adjacency matrix.
We develop a novel autoregressive model, named BiGG, that utilizes this sparsity to avoid generating the full adjacency matrix.
During training this autoregressive model can be parallelized with $O(log n)$ synchronization stages.
arXiv Detail & Related papers (2020-06-28T04:37:57Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
Graph neural networks (GNNs) learn the representation of a node by aggregating its neighbors.
Over-smoothing is one of the key issues which limit the performance of GNNs as the number of layers increases.
We introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN)
arXiv Detail & Related papers (2020-06-12T07:18:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.