FinePseudo: Improving Pseudo-Labelling through Temporal-Alignablity for Semi-Supervised Fine-Grained Action Recognition
- URL: http://arxiv.org/abs/2409.01448v1
- Date: Mon, 2 Sep 2024 20:08:06 GMT
- Title: FinePseudo: Improving Pseudo-Labelling through Temporal-Alignablity for Semi-Supervised Fine-Grained Action Recognition
- Authors: Ishan Rajendrakumar Dave, Mamshad Nayeem Rizve, Mubarak Shah,
- Abstract summary: Real-life applications of action recognition often require a fine-grained understanding of subtle movements.
Existing semi-supervised action recognition has mainly focused on coarse-grained action recognition.
We propose an Alignability-Verification-based Metric learning technique to effectively discriminate between fine-grained action pairs.
- Score: 57.17966905865054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-life applications of action recognition often require a fine-grained understanding of subtle movements, e.g., in sports analytics, user interactions in AR/VR, and surgical videos. Although fine-grained actions are more costly to annotate, existing semi-supervised action recognition has mainly focused on coarse-grained action recognition. Since fine-grained actions are more challenging due to the absence of scene bias, classifying these actions requires an understanding of action-phases. Hence, existing coarse-grained semi-supervised methods do not work effectively. In this work, we for the first time thoroughly investigate semi-supervised fine-grained action recognition (FGAR). We observe that alignment distances like dynamic time warping (DTW) provide a suitable action-phase-aware measure for comparing fine-grained actions, a concept previously unexploited in FGAR. However, since regular DTW distance is pairwise and assumes strict alignment between pairs, it is not directly suitable for classifying fine-grained actions. To utilize such alignment distances in a limited-label setting, we propose an Alignability-Verification-based Metric learning technique to effectively discriminate between fine-grained action pairs. Our learnable alignability score provides a better phase-aware measure, which we use to refine the pseudo-labels of the primary video encoder. Our collaborative pseudo-labeling-based framework `\textit{FinePseudo}' significantly outperforms prior methods on four fine-grained action recognition datasets: Diving48, FineGym99, FineGym288, and FineDiving, and shows improvement on existing coarse-grained datasets: Kinetics400 and Something-SomethingV2. We also demonstrate the robustness of our collaborative pseudo-labeling in handling novel unlabeled classes in open-world semi-supervised setups. Project Page: https://daveishan.github.io/finepsuedo-webpage/.
Related papers
- Weakly-Supervised Temporal Action Localization with Bidirectional
Semantic Consistency Constraint [83.36913240873236]
Weakly Supervised Temporal Action localization (WTAL) aims to classify and localize temporal boundaries of actions for the video.
We propose a simple yet efficient method, named bidirectional semantic consistency constraint (Bi- SCC) to discriminate the positive actions from co-scene actions.
Experimental results show that our approach outperforms the state-of-the-art methods on THUMOS14 and ActivityNet.
arXiv Detail & Related papers (2023-04-25T07:20:33Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
Localizing people and recognizing their actions from videos is a challenging task towards high-level video understanding.
Existing methods are mostly two-stage based, with one stage for person bounding box generation and the other stage for action recognition.
We present a decoupled one-stage network dubbed DOAD, to improve the efficiency for-temporal action detection.
arXiv Detail & Related papers (2023-04-01T08:06:43Z) - Weakly-Supervised Temporal Action Detection for Fine-Grained Videos with
Hierarchical Atomic Actions [13.665489987620724]
We tackle the problem of weakly-supervised fine-grained temporal action detection in videos for the first time.
We propose to model actions as the combinations of reusable atomic actions which are automatically discovered from data.
Our approach constructs a visual representation hierarchy of four levels: clip level, atomic action level, fine action class level and coarse action class level, with supervision at each level.
arXiv Detail & Related papers (2022-07-24T20:32:24Z) - Fine-grained Temporal Contrastive Learning for Weakly-supervised
Temporal Action Localization [87.47977407022492]
This paper argues that learning by contextually comparing sequence-to-sequence distinctions offers an essential inductive bias in weakly-supervised action localization.
Under a differentiable dynamic programming formulation, two complementary contrastive objectives are designed, including Fine-grained Sequence Distance (FSD) contrasting and Longest Common Subsequence (LCS) contrasting.
Our method achieves state-of-the-art performance on two popular benchmarks.
arXiv Detail & Related papers (2022-03-31T05:13:50Z) - End-to-End Semi-Supervised Learning for Video Action Detection [23.042410033982193]
We propose a simple end-to-end based approach effectively which utilizes the unlabeled data.
Video action detection requires both, action class prediction as well as a-temporal consistency.
We demonstrate the effectiveness of the proposed approach on two different action detection benchmark datasets.
arXiv Detail & Related papers (2022-03-08T18:11:25Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications.
We propose a few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class.
Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions.
arXiv Detail & Related papers (2021-08-15T02:21:01Z) - Learning Salient Boundary Feature for Anchor-free Temporal Action
Localization [81.55295042558409]
Temporal action localization is an important yet challenging task in video understanding.
We propose the first purely anchor-free temporal localization method.
Our model includes (i) an end-to-end trainable basic predictor, (ii) a saliency-based refinement module, and (iii) several consistency constraints.
arXiv Detail & Related papers (2021-03-24T12:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.