ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks
- URL: http://arxiv.org/abs/2409.01722v2
- Date: Thu, 5 Sep 2024 01:13:24 GMT
- Title: ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks
- Authors: Niousha Nazemi, Omid Tavallaie, Shuaijun Chen, Anna Maria Mandalari, Kanchana Thilakarathna, Ralph Holz, Hamed Haddadi, Albert Y. Zomaya,
- Abstract summary: Federated Learning (FL) is a distributed learning framework designed for privacy-aware applications.
Traditional FL approaches risk exposing sensitive client data when plain model updates are transmitted to the server.
Google's Secure Aggregation (SecAgg) protocol addresses this threat by employing a double-masking technique.
We propose ACCESS-FL, a communication-and-computation-efficient secure aggregation method.
- Score: 26.002975401820887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a promising distributed learning framework designed for privacy-aware applications. FL trains models on client devices without sharing the client's data and generates a global model on a server by aggregating model updates. Traditional FL approaches risk exposing sensitive client data when plain model updates are transmitted to the server, making them vulnerable to security threats such as model inversion attacks where the server can infer the client's original training data from monitoring the changes of the trained model in different rounds. Google's Secure Aggregation (SecAgg) protocol addresses this threat by employing a double-masking technique, secret sharing, and cryptography computations in honest-but-curious and adversarial scenarios with client dropouts. However, in scenarios without the presence of an active adversary, the computational and communication cost of SecAgg significantly increases by growing the number of clients. To address this issue, in this paper, we propose ACCESS-FL, a communication-and-computation-efficient secure aggregation method designed for honest-but-curious scenarios in stable FL networks with a limited rate of client dropout. ACCESS-FL reduces the computation/communication cost to a constant level (independent of the network size) by generating shared secrets between only two clients and eliminating the need for double masking, secret sharing, and cryptography computations. To evaluate the performance of ACCESS-FL, we conduct experiments using the MNIST, FMNIST, and CIFAR datasets to verify the performance of our proposed method. The evaluation results demonstrate that our proposed method significantly reduces computation and communication overhead compared to state-of-the-art methods, SecAgg and SecAgg+.
Related papers
- EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters [3.9660142560142067]
Federated Learning (FL) enables model training across decentralized devices by communicating solely local model updates to an aggregation server.
FL remains vulnerable to inference attacks during model update transmissions.
We present EncCluster, a novel method that integrates model compression through weight clustering with recent decentralized FE and privacy-enhancing data encoding.
arXiv Detail & Related papers (2024-06-13T14:16:50Z) - Boosting Communication Efficiency of Federated Learning's Secure Aggregation [22.943966056320424]
Federated Learning (FL) is a decentralized machine learning approach where client devices train models locally and send them to a server.
FL is vulnerable to model inversion attacks, where the server can infer sensitive client data from trained models.
Google's Secure Aggregation (SecAgg) protocol addresses this data privacy issue by masking each client's trained model.
This poster introduces a Communication-Efficient Secure Aggregation (CESA) protocol that substantially reduces this overhead.
arXiv Detail & Related papers (2024-05-02T10:00:16Z) - Fluent: Round-efficient Secure Aggregation for Private Federated
Learning [23.899922716694427]
Federated learning (FL) facilitates collaborative training of machine learning models among a large number of clients.
FL remains susceptible to vulnerabilities such as privacy inference and inversion attacks.
This work introduces Fluent, a round and communication-efficient secure aggregation scheme for private FL.
arXiv Detail & Related papers (2024-03-10T09:11:57Z) - Fed-urlBERT: Client-side Lightweight Federated Transformers for URL Threat Analysis [6.552094912099549]
Federated URL pre-trained model designed to address both privacy concerns and the need for cross-domain collaboration in cybersecurity.
Our appraoch achieves performance comparable to centralized model under both independently and identically distributed (IID) and two non-IID data scenarios.
arXiv Detail & Related papers (2023-12-06T17:31:16Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Robust Quantity-Aware Aggregation for Federated Learning [72.59915691824624]
Malicious clients can poison model updates and claim large quantities to amplify the impact of their model updates in the model aggregation.
Existing defense methods for FL, while all handling malicious model updates, either treat all quantities benign or simply ignore/truncate the quantities of all clients.
We propose a robust quantity-aware aggregation algorithm for federated learning, called FedRA, to perform the aggregation with awareness of local data quantities.
arXiv Detail & Related papers (2022-05-22T15:13:23Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
Federated learning (FL) has attracted much attention as a privacy-preserving distributed machine learning framework.
This paper proposes a coded federated learning framework, namely coded federated learning (SCFL) to mitigate the straggler issue.
We characterize the privacy guarantee by the mutual information differential privacy (MI-DP) and analyze the convergence performance in federated learning.
arXiv Detail & Related papers (2022-01-25T04:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.