A Fresh Take on Stale Embeddings: Improving Dense Retriever Training with Corrector Networks
- URL: http://arxiv.org/abs/2409.01890v1
- Date: Tue, 3 Sep 2024 13:29:13 GMT
- Title: A Fresh Take on Stale Embeddings: Improving Dense Retriever Training with Corrector Networks
- Authors: Nicholas Monath, Will Grathwohl, Michael Boratko, Rob Fergus, Andrew McCallum, Manzil Zaheer,
- Abstract summary: In dense retrieval, deep encoders provide embeddings for both inputs and targets.
We train a small parametric corrector network that adjusts stale cached target embeddings.
Our approach matches state-of-the-art results even when no target embedding updates are made during training.
- Score: 81.2624272756733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In dense retrieval, deep encoders provide embeddings for both inputs and targets, and the softmax function is used to parameterize a distribution over a large number of candidate targets (e.g., textual passages for information retrieval). Significant challenges arise in training such encoders in the increasingly prevalent scenario of (1) a large number of targets, (2) a computationally expensive target encoder model, (3) cached target embeddings that are out-of-date due to ongoing training of target encoder parameters. This paper presents a simple and highly scalable response to these challenges by training a small parametric corrector network that adjusts stale cached target embeddings, enabling an accurate softmax approximation and thereby sampling of up-to-date high scoring "hard negatives." We theoretically investigate the generalization properties of our proposed target corrector, relating the complexity of the network, staleness of cached representations, and the amount of training data. We present experimental results on large benchmark dense retrieval datasets as well as on QA with retrieval augmented language models. Our approach matches state-of-the-art results even when no target embedding updates are made during training beyond an initial cache from the unsupervised pre-trained model, providing a 4-80x reduction in re-embedding computational cost.
Related papers
- Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - Noise-Robust Dense Retrieval via Contrastive Alignment Post Training [89.29256833403167]
Contrastive Alignment POst Training (CAPOT) is a highly efficient finetuning method that improves model robustness without requiring index regeneration.
CAPOT enables robust retrieval by freezing the document encoder while the query encoder learns to align noisy queries with their unaltered root.
We evaluate CAPOT noisy variants of MSMARCO, Natural Questions, and Trivia QA passage retrieval, finding CAPOT has a similar impact as data augmentation with none of its overhead.
arXiv Detail & Related papers (2023-04-06T22:16:53Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
This work offers a novel unsupervised pre-training solution for low-data regimes.
Inspired by the recent success of the Prompting technique, we introduce a new pre-training method that boosts QEIS models.
Experimental results show that our method significantly boosts several QEIS models on three datasets.
arXiv Detail & Related papers (2023-02-02T15:49:03Z) - Discrete Key-Value Bottleneck [95.61236311369821]
Deep neural networks perform well on classification tasks where data streams are i.i.d. and labeled data is abundant.
One powerful approach that has addressed this challenge involves pre-training of large encoders on volumes of readily available data, followed by task-specific tuning.
Given a new task, however, updating the weights of these encoders is challenging as a large number of weights needs to be fine-tuned, and as a result, they forget information about the previous tasks.
We propose a model architecture to address this issue, building upon a discrete bottleneck containing pairs of separate and learnable key-value codes.
arXiv Detail & Related papers (2022-07-22T17:52:30Z) - Guiding the retraining of convolutional neural networks against
adversarial inputs [9.67555836316884]
We examined four guidance metrics for retraining convolutional neural networks and three retraining configurations.
Our goal is to improve the models against adversarial inputs regarding accuracy, resource utilization and time.
arXiv Detail & Related papers (2022-07-08T05:00:28Z) - Accelerating Deep Learning with Dynamic Data Pruning [0.0]
Deep learning has become prohibitively costly, requiring access to powerful computing systems to train state-of-the-art networks.
Previous work, such as forget scores and GraNd/EL2N scores, identify important samples within a full dataset and pruning the remaining samples, thereby reducing the iterations per epoch.
We propose two algorithms, based on reinforcement learning techniques, to dynamically prune samples and achieve even higher accuracy than the random dynamic method.
arXiv Detail & Related papers (2021-11-24T16:47:34Z) - Cascade Bagging for Accuracy Prediction with Few Training Samples [8.373420721376739]
We propose a novel framework to train an accuracy predictor under few training samples.
The framework consists ofdata augmentation methods and an ensemble learning algorithm.
arXiv Detail & Related papers (2021-08-12T09:10:52Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.