Map-Assisted Remote-Sensing Image Compression at Extremely Low Bitrates
- URL: http://arxiv.org/abs/2409.01935v1
- Date: Tue, 3 Sep 2024 14:29:54 GMT
- Title: Map-Assisted Remote-Sensing Image Compression at Extremely Low Bitrates
- Authors: Yixuan Ye, Ce Wang, Wanjie Sun, Zhenzhong Chen,
- Abstract summary: Generative models have been explored to compress RS images into extremely low-bitrate streams.
These generative models struggle to reconstruct visually plausible images due to the highly ill-posed nature of extremely low-bitrate image compression.
We propose an image compression framework that utilizes a pre-trained diffusion model with powerful natural image priors to achieve high-realism reconstructions.
- Score: 47.47031054057152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote-sensing (RS) image compression at extremely low bitrates has always been a challenging task in practical scenarios like edge device storage and narrow bandwidth transmission. Generative models including VAEs and GANs have been explored to compress RS images into extremely low-bitrate streams. However, these generative models struggle to reconstruct visually plausible images due to the highly ill-posed nature of extremely low-bitrate image compression. To this end, we propose an image compression framework that utilizes a pre-trained diffusion model with powerful natural image priors to achieve high-realism reconstructions. However, diffusion models tend to hallucinate small structures and textures due to the significant information loss at limited bitrates. Thus, we introduce vector maps as semantic and structural guidance and propose a novel image compression approach named Map-Assisted Generative Compression (MAGC). MAGC employs a two-stage pipeline to compress and decompress RS images at extremely low bitrates. The first stage maps an image into a latent representation, which is then further compressed in a VAE architecture to save bitrates and serves as implicit guidance in the subsequent diffusion process. The second stage conducts a conditional diffusion model to generate a visually pleasing and semantically accurate result using implicit guidance and explicit semantic guidance. Quantitative and qualitative comparisons show that our method outperforms standard codecs and other learning-based methods in terms of perceptual quality and semantic accuracy. The dataset and code will be publicly available at https://github.com/WHUyyx/MAGC.
Related papers
- Towards Extreme Image Compression with Latent Feature Guidance and Diffusion Prior [8.772652777234315]
We propose a novel two-stage extreme image compression framework that exploits the powerful generative capability of pre-trained diffusion models.
Our method significantly outperforms state-of-the-art approaches in terms of visual performance at extremely lows.
arXiv Detail & Related papers (2024-04-29T16:02:38Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
This paper proposes a method called Multimodal Image Semantic Compression.
It consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information.
It can achieve optimal consistency and perception results while saving perceptual 50%, which has strong potential applications in the next generation of storage and communication.
arXiv Detail & Related papers (2024-02-26T17:11:11Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Image Compression and Decompression Framework Based on Latent Diffusion
Model for Breast Mammography [0.0]
This research presents a novel framework for the compression and decompression of medical images utilizing the Latent Diffusion Model (LDM)
The LDM represents advancement over the denoising diffusion probabilistic model (DDPM) with a potential to yield superior image quality.
A possible application of LDM and Torchvision for image upscaling has been explored using medical image data.
arXiv Detail & Related papers (2023-10-08T22:08:59Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
We introduce vector quantization (VQ)-based generative models into the image compression domain.
The codebook learned by the VQGAN model yields a strong expressive capacity.
The proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics.
arXiv Detail & Related papers (2023-07-17T06:14:19Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
Learned image compression (LIC) methods have experienced significant progress during recent years.
LIC methods fail to explicitly explore the image structure and texture components crucial for image compression.
We present DA-Mask that samples visible patches based on the structure and texture of original images.
We propose a simple yet effective masked compression model (MCM), the first framework that unifies LIC and LIC end-to-end for extremely low-bitrate compression.
arXiv Detail & Related papers (2023-06-27T15:36:22Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
Most existing learned image compression models are based on Convolutional Neural Networks (CNNs)
In this paper, we study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block.
The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models.
arXiv Detail & Related papers (2022-03-16T07:55:49Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.