Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm
- URL: http://arxiv.org/abs/2409.01978v2
- Date: Wed, 11 Sep 2024 09:54:19 GMT
- Title: Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm
- Authors: Oleksandr Borysenko, Mykhailo Bratchenko, Ilya Lukin, Mykola Luhanko, Ihor Omelchenko, Andrii Sotnikov, Alessandro Lomi,
- Abstract summary: A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.
In this study, we employ the Langevin equation with a QNG force to demonstrate that its discrete-time solution gives a generalized form, which we call Momentum-QNG.
- Score: 47.47843839099175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently. In this study, we employ the Langevin equation with a QNG stochastic force to demonstrate that its discrete-time solution gives a generalized form of the above-specified algorithm, which we call Momentum-QNG. Similar to other optimization algorithms with the momentum term, such as the Stochastic Gradient Descent with momentum, RMSProp with momentum and Adam, Momentum-QNG is more effective to escape local minima and plateaus in the variational parameter space and, therefore, achieves a better convergence behavior compared to the basic QNG. Our open-source code is available at https://github.com/borbysh/Momentum-QNG
Related papers
- Random Natural Gradient [0.0]
Quantum Natural Gradient (QNG) is a method that uses information about the local geometry of the quantum state-space.
We propose two methods that reduce the resources/state preparations required for QNG, while keeping the advantages and performance of the QNG-based optimization.
arXiv Detail & Related papers (2023-11-07T17:04:23Z) - Quantum Natural Gradient with Efficient Backtracking Line Search [0.0]
We present an adaptive implementation of QNGD based on Armijo's rule, which is an efficient backtracking line search.
Our results are yet another confirmation of the importance of differential geometry in variational quantum computations.
arXiv Detail & Related papers (2022-11-01T17:29:32Z) - LAWS: Look Around and Warm-Start Natural Gradient Descent for Quantum
Neural Networks [11.844238544360149]
Vari quantum algorithms (VQAs) have recently received significant attention due to their promising performance in Noisy Intermediate-Scale Quantum computers (NISQ)
VQAs run on parameterized quantum circuits (PQC) with randomlyational parameters are characterized by barren plateaus (BP) where the gradient vanishes exponentially in the number of qubits.
In this paper, we first quantum natural gradient (QNG), which is one of the most popular algorithms used in VQA, from the classical first-order point of optimization.
Then, we proposed a underlineAround underline
arXiv Detail & Related papers (2022-05-05T14:16:40Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - Noisy Bayesian optimization for variational quantum eigensolvers [0.0]
The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm used to find the ground state of a Hamiltonian.
This work proposes an implementation of GPR and BO specifically tailored to perform VQE on quantum computers already available today.
arXiv Detail & Related papers (2021-12-01T11:28:55Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Normalized Gradient Descent for Variational Quantum Algorithms [4.403985869332685]
Vari quantum algorithms (VQAs) are promising methods that leverage noisy quantum computers.
NGD method, which employs the normalized gradient vector to update the parameters, has been successfully utilized in several optimization problems.
We propose a new NGD that can attain the faster convergence than the ordinary NGD.
arXiv Detail & Related papers (2021-06-21T11:03:12Z) - Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to
Improve Generalization [89.7882166459412]
gradient noise (SGN) acts as implicit regularization for deep learning.
Some works attempted to artificially simulate SGN by injecting random noise to improve deep learning.
For simulating SGN at low computational costs and without changing the learning rate or batch size, we propose the Positive-Negative Momentum (PNM) approach.
arXiv Detail & Related papers (2021-03-31T16:08:06Z) - Momentum Q-learning with Finite-Sample Convergence Guarantee [49.38471009162477]
This paper analyzes a class of momentum-based Q-learning algorithms with finite-sample guarantee.
We establish the convergence guarantee for MomentumQ with linear function approximations and Markovian sampling.
We demonstrate through various experiments that the proposed MomentumQ outperforms other momentum-based Q-learning algorithms.
arXiv Detail & Related papers (2020-07-30T12:27:03Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.