LinFusion: 1 GPU, 1 Minute, 16K Image
- URL: http://arxiv.org/abs/2409.02097v3
- Date: Thu, 17 Oct 2024 08:09:37 GMT
- Title: LinFusion: 1 GPU, 1 Minute, 16K Image
- Authors: Songhua Liu, Weihao Yu, Zhenxiong Tan, Xinchao Wang,
- Abstract summary: We introduce a low-rank approximation of a wide spectrum of popular linear token mixers.
We find that the distilled model, termed LinFusion, achieves performance on par with or superior to the original SD.
Experiments on SD-v1.5, SD-v2.1, and SD-XL demonstrate that LinFusion enables satisfactory and efficient zero-shot cross-resolution generation.
- Score: 71.44735417472043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern diffusion models, particularly those utilizing a Transformer-based UNet for denoising, rely heavily on self-attention operations to manage complex spatial relationships, thus achieving impressive generation performance. However, this existing paradigm faces significant challenges in generating high-resolution visual content due to its quadratic time and memory complexity with respect to the number of spatial tokens. To address this limitation, we aim at a novel linear attention mechanism as an alternative in this paper. Specifically, we begin our exploration from recently introduced models with linear complexity, e.g., Mamba2, RWKV6, Gated Linear Attention, etc, and identify two key features--attention normalization and non-causal inference--that enhance high-resolution visual generation performance. Building on these insights, we introduce a generalized linear attention paradigm, which serves as a low-rank approximation of a wide spectrum of popular linear token mixers. To save the training cost and better leverage pre-trained models, we initialize our models and distill the knowledge from pre-trained StableDiffusion (SD). We find that the distilled model, termed LinFusion, achieves performance on par with or superior to the original SD after only modest training, while significantly reducing time and memory complexity. Extensive experiments on SD-v1.5, SD-v2.1, and SD-XL demonstrate that LinFusion enables satisfactory and efficient zero-shot cross-resolution generation, accommodating ultra-resolution images like 16K on a single GPU. Moreover, it is highly compatible with pre-trained SD components and pipelines, such as ControlNet, IP-Adapter, DemoFusion, DistriFusion, etc, requiring no adaptation efforts. Codes are available at https://github.com/Huage001/LinFusion.
Related papers
- One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation [60.54811860967658]
FluxSR is a novel one-step diffusion Real-ISR based on flow matching models.
First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR.
Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss.
arXiv Detail & Related papers (2025-02-04T04:11:29Z) - Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models [34.15905637499148]
We propose aligning the latent space with pre-trained vision foundation models when training the visual tokenizers.
Our proposed VA-VAE significantly expands the reconstruction-generation frontier of latent diffusion models.
We build an enhanced DiT baseline with improved training strategies and architecture designs, termed LightningDiT.
arXiv Detail & Related papers (2025-01-02T18:59:40Z) - CLEAR: Conv-Like Linearization Revs Pre-Trained Diffusion Transformers Up [64.38715211969516]
We introduce a convolution-like local attention strategy termed CLEAR, which limits feature interactions to a local window around each query token.
Experiments indicate that, by fine-tuning the attention layer on merely 10K self-generated samples for 10K iterations, we can effectively transfer knowledge from a pre-trained DiT to a student model with linear complexity.
arXiv Detail & Related papers (2024-12-20T17:57:09Z) - Collaborative Decoding Makes Visual Auto-Regressive Modeling Efficient [52.96232442322824]
Collaborative Decoding (CoDe) is a novel efficient decoding strategy tailored for the Visual Auto-Regressive ( VAR) framework.
CoDe capitalizes on two critical observations: the substantially reduced parameter demands at larger scales and the exclusive generation patterns across different scales.
CoDe achieves a 1.7x speedup, slashes memory usage by around 50%, and preserves image quality with only a negligible FID increase from 1.95 to 1.98.
arXiv Detail & Related papers (2024-11-26T15:13:15Z) - Alleviating Distortion in Image Generation via Multi-Resolution Diffusion Models and Time-Dependent Layer Normalization [26.926712014346432]
This paper presents innovative enhancements to diffusion models by integrating a novel multi-resolution network and time-dependent layer normalization.
Our method's efficacy is demonstrated on the class-conditional ImageNet generation benchmark, setting new state-of-the-art FID scores of 1.70 on ImageNet 256 x 256 and 2.89 on ImageNet 512 x 512.
arXiv Detail & Related papers (2024-06-13T17:59:58Z) - Latent-based Diffusion Model for Long-tailed Recognition [10.410057703866899]
Long-tailed imbalance distribution is a common issue in practical computer vision applications.
We propose a new approach, the Latent-based Diffusion Model for Long-tailed Recognition (LDMLR) as a feature augmentation method to tackle the issue.
The model's accuracy shows an improvement on the CIFAR-LT and ImageNet-LT datasets by using the proposed method.
arXiv Detail & Related papers (2024-04-06T06:15:07Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Breaking Through the Haze: An Advanced Non-Homogeneous Dehazing Method
based on Fast Fourier Convolution and ConvNeXt [14.917290578644424]
Haze usually leads to deteriorated images with low contrast, color shift and structural distortion.
We propose a novel two branch network that leverages 2D discrete wavelete transform (DWT), fast Fourier convolution (FFC) residual block and a pretrained ConvNeXt model.
Our model is able to effectively explore global contextual information and produce images with better perceptual quality.
arXiv Detail & Related papers (2023-05-08T02:59:02Z) - Improved Transformer for High-Resolution GANs [69.42469272015481]
We introduce two key ingredients to Transformer to address this challenge.
We show in the experiments that the proposed HiT achieves state-of-the-art FID scores of 31.87 and 2.95 on unconditional ImageNet $128 times 128$ and FFHQ $256 times 256$, respectively.
arXiv Detail & Related papers (2021-06-14T17:39:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.