Collaboratively Learning Federated Models from Noisy Decentralized Data
- URL: http://arxiv.org/abs/2409.02189v1
- Date: Tue, 3 Sep 2024 18:00:51 GMT
- Title: Collaboratively Learning Federated Models from Noisy Decentralized Data
- Authors: Haoyuan Li, Mathias Funk, Nezihe Merve Gürel, Aaqib Saeed,
- Abstract summary: Federated learning (FL) has emerged as a prominent method for collaboratively training machine learning models using local data from edge devices.
We focus on addressing the problem of noisy data in the input space, an under-explored area compared to the label noise.
We propose a noise-aware FL aggregation method, namely Federated Noise-Sifting (FedNS), which can be used as a plug-in approach in conjunction with widely used FL strategies.
- Score: 21.3209961590772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has emerged as a prominent method for collaboratively training machine learning models using local data from edge devices, all while keeping data decentralized. However, accounting for the quality of data contributed by local clients remains a critical challenge in FL, as local data are often susceptible to corruption by various forms of noise and perturbations, which compromise the aggregation process and lead to a subpar global model. In this work, we focus on addressing the problem of noisy data in the input space, an under-explored area compared to the label noise. We propose a comprehensive assessment of client input in the gradient space, inspired by the distinct disparity observed between the density of gradient norm distributions of models trained on noisy and clean input data. Based on this observation, we introduce a straightforward yet effective approach to identify clients with low-quality data at the initial stage of FL. Furthermore, we propose a noise-aware FL aggregation method, namely Federated Noise-Sifting (FedNS), which can be used as a plug-in approach in conjunction with widely used FL strategies. Our extensive evaluation on diverse benchmark datasets under different federated settings demonstrates the efficacy of FedNS. Our method effortlessly integrates with existing FL strategies, enhancing the global model's performance by up to 13.68% in IID and 15.85% in non-IID settings when learning from noisy decentralized data.
Related papers
- FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-preserving Feature Augmentation [15.298650496155508]
Federated Learning (FL) enables model development by leveraging data distributed across numerous edge devices without transferring local data to a central server.
Existing FL methods face challenges when dealing with scarce and label-skewed data across devices, resulting in local model overfitting and drift.
We propose a pioneering framework called FLea, incorporating the following key components.
arXiv Detail & Related papers (2024-06-13T19:28:08Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FedDiv: Collaborative Noise Filtering for Federated Learning with Noisy
Labels [99.70895640578816]
Federated learning with noisy labels (F-LNL) aims at seeking an optimal server model via collaborative distributed learning.
We present FedDiv to tackle the challenges of F-LNL. Specifically, we propose a global noise filter called Federated Noise Filter.
arXiv Detail & Related papers (2023-12-19T15:46:47Z) - Federated Learning with Instance-Dependent Noisy Label [6.093214616626228]
FedBeat aims to build a global statistically consistent classifier using the IDN transition matrix (IDNTM)
Experiments conducted on CIFAR-10 and SVHN verify that the proposed method significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-16T05:08:02Z) - Learning Cautiously in Federated Learning with Noisy and Heterogeneous
Clients [4.782145666637457]
Federated learning (FL) is a distributed framework for collaboratively training with privacy guarantees.
In real-world scenarios, clients may have Non-IID data (local class imbalance) with poor annotation quality (label noise)
We propose FedCNI without using an additional clean proxy dataset.
It includes a noise-resilient local solver and a robust global aggregator.
arXiv Detail & Related papers (2023-04-06T06:47:14Z) - Quantifying the Impact of Label Noise on Federated Learning [7.531486350989069]
Federated Learning (FL) is a distributed machine learning paradigm where clients collaboratively train a model using their local (human-generated) datasets.
This paper provides a quantitative study on the impact of label noise on FL.
Our empirical results show that the global model accuracy linearly decreases as the noise level increases.
arXiv Detail & Related papers (2022-11-15T00:40:55Z) - Labeling Chaos to Learning Harmony: Federated Learning with Noisy Labels [3.4620497416430456]
Federated Learning (FL) is a distributed machine learning paradigm that enables learning models from decentralized private datasets.
We propose FedLN, a framework to deal with label noise across different FL training stages.
Our evaluation on various publicly available vision and audio datasets demonstrate a 22% improvement on average compared to other existing methods for a label noise level of 60%.
arXiv Detail & Related papers (2022-08-19T14:47:40Z) - FedNoiL: A Simple Two-Level Sampling Method for Federated Learning with
Noisy Labels [49.47228898303909]
Federated learning (FL) aims at training a global model on the server side while the training data are collected and located at the local devices.
Local training on noisy labels can easily result in overfitting to noisy labels, which is devastating to the global model through aggregation.
We develop a simple two-level sampling method "FedNoiL" that selects clients for more robust global aggregation on the server.
arXiv Detail & Related papers (2022-05-20T12:06:39Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Federated Noisy Client Learning [105.00756772827066]
Federated learning (FL) collaboratively aggregates a shared global model depending on multiple local clients.
Standard FL methods ignore the noisy client issue, which may harm the overall performance of the aggregated model.
We propose Federated Noisy Client Learning (Fed-NCL), which is a plug-and-play algorithm and contains two main components.
arXiv Detail & Related papers (2021-06-24T11:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.