LSTMSE-Net: Long Short Term Speech Enhancement Network for Audio-visual Speech Enhancement
- URL: http://arxiv.org/abs/2409.02266v1
- Date: Tue, 3 Sep 2024 19:52:49 GMT
- Title: LSTMSE-Net: Long Short Term Speech Enhancement Network for Audio-visual Speech Enhancement
- Authors: Arnav Jain, Jasmer Singh Sanjotra, Harshvardhan Choudhary, Krish Agrawal, Rupal Shah, Rohan Jha, M. Sajid, Amir Hussain, M. Tanveer,
- Abstract summary: We propose long short term memory speech enhancement network (LSTMSE-Net)
This innovative method leverages the complementary nature of visual and audio information to boost the quality of speech signals.
The system scales and highlights visual and audio features, then surpasses them through a separator network for optimized speech enhancement.
- Score: 4.891339883978289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose long short term memory speech enhancement network (LSTMSE-Net), an audio-visual speech enhancement (AVSE) method. This innovative method leverages the complementary nature of visual and audio information to boost the quality of speech signals. Visual features are extracted with VisualFeatNet (VFN), and audio features are processed through an encoder and decoder. The system scales and concatenates visual and audio features, then processes them through a separator network for optimized speech enhancement. The architecture highlights advancements in leveraging multi-modal data and interpolation techniques for robust AVSE challenge systems. The performance of LSTMSE-Net surpasses that of the baseline model from the COG-MHEAR AVSE Challenge 2024 by a margin of 0.06 in scale-invariant signal-to-distortion ratio (SISDR), $0.03$ in short-time objective intelligibility (STOI), and $1.32$ in perceptual evaluation of speech quality (PESQ). The source code of the proposed LSTMSE-Net is available at \url{https://github.com/mtanveer1/AVSEC-3-Challenge}.
Related papers
- Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
We present a multilingual Audio-Visual Speech Recognition model incorporating several enhancements to improve performance and audio noise robustness.
We increase the amount of audio-visual training data for six distinct languages, generating automatic transcriptions of unlabelled multilingual datasets.
Our proposed model achieves new state-of-the-art performance on the LRS3 dataset, reaching WER of 0.8%.
arXiv Detail & Related papers (2024-03-14T01:16:32Z) - TDFNet: An Efficient Audio-Visual Speech Separation Model with Top-down
Fusion [21.278294846228935]
Top-Down-Fusion Net (TDFNet) is a state-of-the-art (SOTA) model for audio-visual speech separation.
TDFNet achieves a performance increase of up to 10% across all performance metrics compared with the previous SOTA method CTCNet.
arXiv Detail & Related papers (2024-01-25T13:47:22Z) - Cross-Speaker Encoding Network for Multi-Talker Speech Recognition [74.97576062152709]
Cross-MixSpeaker.
Network addresses limitations of SIMO models by aggregating cross-speaker representations.
Network is integrated with SOT to leverage both the advantages of SIMO and SISO.
arXiv Detail & Related papers (2024-01-08T16:37:45Z) - MLCA-AVSR: Multi-Layer Cross Attention Fusion based Audio-Visual Speech Recognition [62.89464258519723]
We propose a multi-layer cross-attention fusion based AVSR approach that promotes representation of each modality by fusing them at different levels of audio/visual encoders.
Our proposed approach surpasses the first-place system, establishing a new SOTA cpCER of 29.13% on this dataset.
arXiv Detail & Related papers (2024-01-07T08:59:32Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
Visually-guided sound source separation consists of three parts: visual feature extraction, multimodal feature fusion, and sound signal processing.
This paper presents audio-visual predictive coding (AVPC) to tackle this task in parameter harmonizing and more effective manner.
In addition, we develop a valid self-supervised learning strategy for AVPC via co-predicting two audio-visual representations of the same sound source.
arXiv Detail & Related papers (2023-06-19T03:10:57Z) - Speech-enhanced and Noise-aware Networks for Robust Speech Recognition [25.279902171523233]
A noise-aware training framework based on two cascaded neural structures is proposed to jointly optimize speech enhancement and speech recognition.
The two proposed systems achieve word error rate (WER) of 3.90% and 3.55%, respectively, on the Aurora-4 task.
Compared with the best existing systems that use bigram and trigram language models for decoding, the proposed CNN-TDNNF-based system achieves a relative WER reduction of 15.20% and 33.53%, respectively.
arXiv Detail & Related papers (2022-03-25T15:04:51Z) - A Study of Designing Compact Audio-Visual Wake Word Spotting System
Based on Iterative Fine-Tuning in Neural Network Pruning [57.28467469709369]
We investigate on designing a compact audio-visual wake word spotting (WWS) system by utilizing visual information.
We introduce a neural network pruning strategy via the lottery ticket hypothesis in an iterative fine-tuning manner (LTH-IF)
The proposed audio-visual system achieves significant performance improvements over the single-modality (audio-only or video-only) system under different noisy conditions.
arXiv Detail & Related papers (2022-02-17T08:26:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.