Understanding the Role of Functional Diversity in Weight-Ensembling with Ingredient Selection and Multidimensional Scaling
- URL: http://arxiv.org/abs/2409.02347v1
- Date: Wed, 4 Sep 2024 00:24:57 GMT
- Title: Understanding the Role of Functional Diversity in Weight-Ensembling with Ingredient Selection and Multidimensional Scaling
- Authors: Alex Rojas, David Alvarez-Melis,
- Abstract summary: We introduce two novel weight-ensembling approaches to study the link between performance dynamics and the nature of how each method decides to apply the functionally diverse components.
We develop a visualization tool to explain how each algorithm explores various domains defined via pairwise-distances to further investigate selection and algorithms' convergence.
- Score: 7.535219325248997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weight-ensembles are formed when the parameters of multiple neural networks are directly averaged into a single model. They have demonstrated generalization capability in-distribution (ID) and out-of-distribution (OOD) which is not completely understood, though they are thought to successfully exploit functional diversity allotted by each distinct model. Given a collection of models, it is also unclear which combination leads to the optimal weight-ensemble; the SOTA is a linear-time ``greedy" method. We introduce two novel weight-ensembling approaches to study the link between performance dynamics and the nature of how each method decides to use apply the functionally diverse components, akin to diversity-encouragement in the prediction-ensemble literature. We develop a visualization tool to explain how each algorithm explores various domains defined via pairwise-distances to further investigate selection and algorithms' convergence. Empirical analyses shed perspectives which reinforce how high-diversity enhances weight-ensembling while qualifying the extent to which diversity alone improves accuracy. We also demonstrate that sampling positionally distinct models can contribute just as meaningfully to improvements in a weight-ensemble.
Related papers
- Comparative Analysis of Indicators for Multiobjective Diversity Optimization [0.2144088660722956]
We discuss different diversity indicators from the perspective of indicator-based evolutionary algorithms (IBEA) with multiple objectives.
We examine theoretical, computational, and practical properties of these indicators, such as monotonicity in species.
We present new theorems -- including a proof of the NP-hardness of the Riesz s-Energy Subset Selection Problem.
arXiv Detail & Related papers (2024-10-24T16:40:36Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble [11.542472900306745]
Multi-Comprehension (MC) Ensemble is proposed as a strategy to augment the Out-of-Distribution (OOD) feature representation field.
Our experimental results demonstrate the superior performance of the MC Ensemble strategy in OOD detection.
This underscores the effectiveness of our proposed approach in enhancing the model's capability to detect instances outside its training distribution.
arXiv Detail & Related papers (2024-03-24T18:43:04Z) - Multi-Symmetry Ensembles: Improving Diversity and Generalization via
Opposing Symmetries [14.219011458423363]
We present Multi-Symmetry Ensembles (MSE), a framework for constructing diverse ensembles by capturing the multiplicity of hypotheses along symmetry axes.
MSE effectively captures the multiplicity of conflicting hypotheses that is often required in large, diverse datasets like ImageNet.
As a result of their inherent diversity, MSE improves classification performance, uncertainty quantification, and generalization across a series of transfer tasks.
arXiv Detail & Related papers (2023-03-04T19:11:54Z) - Interpretable Diversity Analysis: Visualizing Feature Representations In
Low-Cost Ensembles [0.0]
This paper introduces several interpretability methods that can be used to qualitatively analyze diversity.
We demonstrate these techniques by comparing the diversity of feature representations between child networks using two low-cost ensemble algorithms.
arXiv Detail & Related papers (2023-02-12T00:32:03Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
This paper proposes an algorithm that produces a continuous global interpretation of any given continuous black-box function.
Our interpretation represents a leap forward from the previous state of the art.
arXiv Detail & Related papers (2020-11-17T12:39:44Z) - Universal Weighting Metric Learning for Cross-Modal Matching [79.32133554506122]
Cross-modal matching has been a highlighted research topic in both vision and language areas.
We propose a simple and interpretable universal weighting framework for cross-modal matching.
arXiv Detail & Related papers (2020-10-07T13:16:45Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z) - Continual Learning using a Bayesian Nonparametric Dictionary of Weight
Factors [75.58555462743585]
Naively trained neural networks tend to experience catastrophic forgetting in sequential task settings.
We propose a principled nonparametric approach based on the Indian Buffet Process (IBP) prior, letting the data determine how much to expand the model complexity.
We demonstrate the effectiveness of our method on a number of continual learning benchmarks and analyze how weight factors are allocated and reused throughout the training.
arXiv Detail & Related papers (2020-04-21T15:20:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.