Building Math Agents with Multi-Turn Iterative Preference Learning
- URL: http://arxiv.org/abs/2409.02392v1
- Date: Wed, 4 Sep 2024 02:41:04 GMT
- Title: Building Math Agents with Multi-Turn Iterative Preference Learning
- Authors: Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, Chi Jin, Tong Zhang, Tianqi Liu,
- Abstract summary: This paper studies the complementary direct preference learning approach to further improve model performance.
Existing direct preference learning algorithms are originally designed for the single-turn chat task.
We introduce a multi-turn direct preference learning framework, tailored for this context.
- Score: 56.71330214021884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown that large language models' (LLMs) mathematical problem-solving capabilities can be enhanced by integrating external tools, such as code interpreters, and employing multi-turn Chain-of-Thought (CoT) reasoning. While current methods focus on synthetic data generation and Supervised Fine-Tuning (SFT), this paper studies the complementary direct preference learning approach to further improve model performance. However, existing direct preference learning algorithms are originally designed for the single-turn chat task, and do not fully address the complexities of multi-turn reasoning and external tool integration required for tool-integrated mathematical reasoning tasks. To fill in this gap, we introduce a multi-turn direct preference learning framework, tailored for this context, that leverages feedback from code interpreters and optimizes trajectory-level preferences. This framework includes multi-turn DPO and multi-turn KTO as specific implementations. The effectiveness of our framework is validated through training of various language models using an augmented prompt set from the GSM8K and MATH datasets. Our results demonstrate substantial improvements: a supervised fine-tuned Gemma-1.1-it-7B model's performance increased from 77.5% to 83.9% on GSM8K and from 46.1% to 51.2% on MATH. Similarly, a Gemma-2-it-9B model improved from 84.1% to 86.3% on GSM8K and from 51.0% to 54.5% on MATH.
Related papers
- Step Guided Reasoning: Improving Mathematical Reasoning using Guidance Generation and Step Reasoning [7.702162381335683]
Step-by-step Chain-of-Thought (CoT) inference has advanced the mathematical capabilities of large language models (LLMs)
We propose a novel method called Step Guidance Reasoning without involving further model fine-tuning.
Our method significantly improved the math performance, raising the accuracy on the AMC23 dataset from 30% to 57.5%, a relative improvement of 91.7%, and on the sampled level 5 problem of the MATH dataset, we achieved a relative accuracy improvement of 55.8%, increasing from 43% to 67%.
arXiv Detail & Related papers (2024-10-18T01:38:24Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Advancing LLM Reasoning Generalists with Preference Trees [119.57169648859707]
We introduce Eurus, a suite of large language models (LLMs) optimized for reasoning.
Eurus models achieve state-of-the-art results among open-source models on a diverse set of benchmarks.
arXiv Detail & Related papers (2024-04-02T16:25:30Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
In reasoning tasks, even a minor error can cascade into inaccurate results.
We develop a method that avoids introducing external resources, relying instead on perturbations to the input.
Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks.
arXiv Detail & Related papers (2024-03-04T16:21:54Z) - MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs [38.127313175508746]
MathGenie is a novel method for generating diverse and reliable math problems from a small-scale problem-solution dataset.
Various pretrained models, ranging from 7B to 70B, are trained on the newly curated data to test the effectiveness of the proposed augmentation technique.
MathGenieLM-InternLM2 achieves an accuracy of 87.7% on GSM8K and 55.7% on MATH, securing the best overall score among open-source language models.
arXiv Detail & Related papers (2024-02-26T07:17:25Z) - Tool-Augmented Reward Modeling [58.381678612409]
We propose a tool-augmented preference modeling approach, named Themis, to address limitations by empowering RMs with access to external environments.
Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources.
In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines.
arXiv Detail & Related papers (2023-10-02T09:47:40Z) - ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving [170.7899683843177]
ToRA is a series of Tool-integrated Reasoning Agents designed to solve challenging mathematical problems.
ToRA models significantly outperform open-source models on 10 mathematical reasoning datasets across all scales.
ToRA-Code-34B is the first open-source model that achieves an accuracy exceeding 50% on MATH.
arXiv Detail & Related papers (2023-09-29T17:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.