SG-MIM: Structured Knowledge Guided Efficient Pre-training for Dense Prediction
- URL: http://arxiv.org/abs/2409.02513v1
- Date: Wed, 4 Sep 2024 08:24:53 GMT
- Title: SG-MIM: Structured Knowledge Guided Efficient Pre-training for Dense Prediction
- Authors: Sumin Son, Hyesong Choi, Dongbo Min,
- Abstract summary: Masked Image Modeling techniques have redefined the landscape of computer vision.
Despite their success, the full potential of MIM-based methods in dense prediction tasks, particularly in depth estimation, remains untapped.
We propose SG-MIM, a novel Structured knowledge Guided Masked Image Modeling framework designed to enhance dense prediction tasks by utilizing structured knowledge alongside images.
- Score: 17.44991827937427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Masked Image Modeling (MIM) techniques have redefined the landscape of computer vision, enabling pre-trained models to achieve exceptional performance across a broad spectrum of tasks. Despite their success, the full potential of MIM-based methods in dense prediction tasks, particularly in depth estimation, remains untapped. Existing MIM approaches primarily rely on single-image inputs, which makes it challenging to capture the crucial structured information, leading to suboptimal performance in tasks requiring fine-grained feature representation. To address these limitations, we propose SG-MIM, a novel Structured knowledge Guided Masked Image Modeling framework designed to enhance dense prediction tasks by utilizing structured knowledge alongside images. SG-MIM employs a lightweight relational guidance framework, allowing it to guide structured knowledge individually at the feature level rather than naively combining at the pixel level within the same architecture, as is common in traditional multi-modal pre-training methods. This approach enables the model to efficiently capture essential information while minimizing discrepancies between pre-training and downstream tasks. Furthermore, SG-MIM employs a selective masking strategy to incorporate structured knowledge, maximizing the synergy between general representation learning and structured knowledge-specific learning. Our method requires no additional annotations, making it a versatile and efficient solution for a wide range of applications. Our evaluations on the KITTI, NYU-v2, and ADE20k datasets demonstrate SG-MIM's superiority in monocular depth estimation and semantic segmentation.
Related papers
- The Power of Noise: Toward a Unified Multi-modal Knowledge Graph Representation Framework [46.69058301083775]
Multi-Modal Knowledge Graph (MMKG) representation learning framework is crucial for integrating structured knowledge into multi-modal Large Language Models (LLMs) at scale.
We propose a novel SNAG method that utilizes a Transformer-based architecture equipped with modality-level noise masking.
Our approach achieves SOTA performance across a total of ten datasets, demonstrating its robustness and versatility.
arXiv Detail & Related papers (2024-03-11T15:48:43Z) - PROMPT-IML: Image Manipulation Localization with Pre-trained Foundation
Models Through Prompt Tuning [35.39822183728463]
We present a novel Prompt-IML framework for detecting tampered images.
Humans tend to discern authenticity of an image based on semantic and high-frequency information.
Our model can achieve better performance on eight typical fake image datasets.
arXiv Detail & Related papers (2024-01-01T03:45:07Z) - BIM: Block-Wise Self-Supervised Learning with Masked Image Modeling [18.861945284506028]
Masked image modeling (MIM) aims to extract valuable insights from image patches to enhance the feature extraction capabilities of the underlying deep neural network (DNN)
arXiv Detail & Related papers (2023-11-28T20:42:30Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
Self-supervised learning can be used for mitigating the greedy needs of Vision Transformer networks.
We propose a single-stage and standalone method, MOCA, which unifies both desired properties.
We achieve new state-of-the-art results on low-shot settings and strong experimental results in various evaluation protocols.
arXiv Detail & Related papers (2023-07-18T15:46:20Z) - Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal
Structured Representations [70.41385310930846]
We present an end-to-end framework Structure-CLIP to enhance multi-modal structured representations.
We use scene graphs to guide the construction of semantic negative examples, which results in an increased emphasis on learning structured representations.
A Knowledge-Enhance (KEE) is proposed to leverage SGK as input to further enhance structured representations.
arXiv Detail & Related papers (2023-05-06T03:57:05Z) - Semantics-Depth-Symbiosis: Deeply Coupled Semi-Supervised Learning of
Semantics and Depth [83.94528876742096]
We tackle the MTL problem of two dense tasks, ie, semantic segmentation and depth estimation, and present a novel attention module called Cross-Channel Attention Module (CCAM)
In a true symbiotic spirit, we then formulate a novel data augmentation for the semantic segmentation task using predicted depth called AffineMix, and a simple depth augmentation using predicted semantics called ColorAug.
Finally, we validate the performance gain of the proposed method on the Cityscapes dataset, which helps us achieve state-of-the-art results for a semi-supervised joint model based on depth and semantic
arXiv Detail & Related papers (2022-06-21T17:40:55Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.