Standing on the Shoulders of Giants: Reprogramming Visual-Language Model for General Deepfake Detection
- URL: http://arxiv.org/abs/2409.02664v1
- Date: Wed, 4 Sep 2024 12:46:30 GMT
- Title: Standing on the Shoulders of Giants: Reprogramming Visual-Language Model for General Deepfake Detection
- Authors: Kaiqing Lin, Yuzhen Lin, Weixiang Li, Taiping Yao, Bin Li,
- Abstract summary: We propose a novel approach that repurposes a well-trained Vision-Language Models (VLMs) for general deepfake detection.
Motivated by the model reprogramming paradigm that manipulates the model prediction via data perturbations, our method can reprogram a pretrained VLM model.
Our superior performances are at less cost of trainable parameters, making it a promising approach for real-world applications.
- Score: 16.21235742118949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of deepfake faces poses huge potential negative impacts on our daily lives. Despite substantial advancements in deepfake detection over these years, the generalizability of existing methods against forgeries from unseen datasets or created by emerging generative models remains constrained. In this paper, inspired by the zero-shot advantages of Vision-Language Models (VLMs), we propose a novel approach that repurposes a well-trained VLM for general deepfake detection. Motivated by the model reprogramming paradigm that manipulates the model prediction via data perturbations, our method can reprogram a pretrained VLM model (e.g., CLIP) solely based on manipulating its input without tuning the inner parameters. Furthermore, we insert a pseudo-word guided by facial identity into the text prompt. Extensive experiments on several popular benchmarks demonstrate that (1) the cross-dataset and cross-manipulation performances of deepfake detection can be significantly and consistently improved (e.g., over 88% AUC in cross-dataset setting from FF++ to WildDeepfake) using a pre-trained CLIP model with our proposed reprogramming method; (2) our superior performances are at less cost of trainable parameters, making it a promising approach for real-world applications.
Related papers
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Unsupervised Pre-training with Language-Vision Prompts for Low-Data Instance Segmentation [105.23631749213729]
We propose a novel method for unsupervised pre-training in low-data regimes.
Inspired by the recently successful prompting technique, we introduce a new method, Unsupervised Pre-training with Language-Vision Prompts.
We show that our method can converge faster and perform better than CNN-based models in low-data regimes.
arXiv Detail & Related papers (2024-05-22T06:48:43Z) - Towards More General Video-based Deepfake Detection through Facial Feature Guided Adaptation for Foundation Model [15.61920157541529]
We propose a novel Deepfake detection approach by adapting the Foundation Models with rich information encoded inside.
Inspired by the recent advances of parameter efficient fine-tuning, we propose a novel side-network-based decoder.
Our approach exhibits superior effectiveness in identifying unseen Deepfake samples, achieving notable performance improvement.
arXiv Detail & Related papers (2024-04-08T14:58:52Z) - CLIPping the Deception: Adapting Vision-Language Models for Universal
Deepfake Detection [3.849401956130233]
We explore the effectiveness of pre-trained vision-language models (VLMs) when paired with recent adaptation methods for universal deepfake detection.
We employ only a single dataset (ProGAN) in order to adapt CLIP for deepfake detection.
The simple and lightweight Prompt Tuning based adaptation strategy outperforms the previous SOTA approach by 5.01% mAP and 6.61% accuracy.
arXiv Detail & Related papers (2024-02-20T11:26:42Z) - Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning [13.964106147449051]
Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets.
We propose a novel and effective framework based on learning Visual Prompts (VPT) in the pre-trained Vision Transformers (ViT)
We demonstrate that our new approximations with semantic information are superior to representative capabilities.
arXiv Detail & Related papers (2024-02-04T04:42:05Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
We present a textbfForgery-aware textbfAdaptive textbfVision textbfTransformer (FA-ViT) under the adaptive learning paradigm.
FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation.
arXiv Detail & Related papers (2023-09-20T06:51:11Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.