Convolutional Neural Networks for Automated Cellular Automaton Classification
- URL: http://arxiv.org/abs/2409.02740v1
- Date: Wed, 4 Sep 2024 14:21:00 GMT
- Title: Convolutional Neural Networks for Automated Cellular Automaton Classification
- Authors: Michiel Rollier, Aisling J. Daly, Jan M. Baetens,
- Abstract summary: We implement computer vision techniques to perform an automated classification of elementary cellular automata into the five Li-Packard classes.
We first show that previously developed deep learning approaches have in fact been trained to identify the local update rule.
We then present a convolutional neural network that performs nearly perfectly at identifying the behavioural class.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The emergent dynamics in spacetime diagrams of cellular automata (CAs) is often organised by means of a number of behavioural classes. Whilst classification of elementary CAs is feasible and well-studied, non-elementary CAs are generally too diverse and numerous to exhaustively classify manually. In this chapter we treat the spacetime diagram as a digital image, and implement simple computer vision techniques to perform an automated classification of elementary cellular automata into the five Li-Packard classes. In particular, we present a supervised learning task to a convolutional neural network, in such a way that it may be generalised to non-elementary CAs. If we want to do so, we must divert the algorithm's focus away from the underlying 'microscopic' local updates. We first show that previously developed deep learning approaches have in fact been trained to identify the local update rule, rather than directly focus on the mesoscopic patterns that are associated with the particular behavioural classes. By means of a well-argued neural network design, as well as a number of data augmentation techniques, we then present a convolutional neural network that performs nearly perfectly at identifying the behavioural class, without necessarily first identifying the underlying microscopic dynamics.
Related papers
- Early learning of the optimal constant solution in neural networks and humans [4.016584525313835]
We show that learning of a target function is preceded by an early phase in which networks learn the optimal constant solution (OCS)
We show that learning of the OCS can emerge even in the absence of bias terms and is equivalently driven by generic correlations in the input data.
Our work suggests the OCS as a universal learning principle in supervised, error-corrective learning.
arXiv Detail & Related papers (2024-06-25T11:12:52Z) - Clustering Inductive Biases with Unrolled Networks [4.47196217712431]
We propose an autoencoder architecture (WLSC) whose latent representations are implicitly, locally organized for spectral clustering through a Laplacian quadratic form of a bipartite graph.
We show that our regularization can be interpreted as early-stage specialization of receptive fields to certain classes of stimuli.
arXiv Detail & Related papers (2023-11-30T02:02:30Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - CQural: A Novel CNN based Hybrid Architecture for Quantum Continual
Machine Learning [0.0]
We show that it is possible to circumvent catastrophic forgetting in continual learning with novel hybrid classical-quantum neural networks.
We also claim that if the model is trained with these explanations, it tends to give better performance and learn specific features that are far from the decision boundary.
arXiv Detail & Related papers (2023-05-16T18:19:12Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Incremental Deep Neural Network Learning using Classification Confidence
Thresholding [4.061135251278187]
Most modern neural networks for classification fail to take into account the concept of the unknown.
This paper proposes the Classification Confidence Threshold approach to prime neural networks for incremental learning.
arXiv Detail & Related papers (2021-06-21T22:46:28Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.