Configurable Foundation Models: Building LLMs from a Modular Perspective
- URL: http://arxiv.org/abs/2409.02877v1
- Date: Wed, 4 Sep 2024 17:01:02 GMT
- Title: Configurable Foundation Models: Building LLMs from a Modular Perspective
- Authors: Chaojun Xiao, Zhengyan Zhang, Chenyang Song, Dazhi Jiang, Feng Yao, Xu Han, Xiaozhi Wang, Shuo Wang, Yufei Huang, Guanyu Lin, Yingfa Chen, Weilin Zhao, Yuge Tu, Zexuan Zhong, Ao Zhang, Chenglei Si, Khai Hao Moo, Chenyang Zhao, Huimin Chen, Yankai Lin, Zhiyuan Liu, Jingbo Shang, Maosong Sun,
- Abstract summary: A growing tendency to decompose LLMs into numerous functional modules allows for inference with part of modules and dynamic assembly of modules to tackle complex tasks.
We coin the term brick to represent each functional module, designating the modularized structure as customizable foundation models.
We present four brick-oriented operations: retrieval and routing, merging, updating, and growing.
We find that the FFN layers follow modular patterns with functional specialization of neurons and functional neuron partitions.
- Score: 115.63847606634268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in LLMs have recently unveiled challenges tied to computational efficiency and continual scalability due to their requirements of huge parameters, making the applications and evolution of these models on devices with limited computation resources and scenarios requiring various abilities increasingly cumbersome. Inspired by modularity within the human brain, there is a growing tendency to decompose LLMs into numerous functional modules, allowing for inference with part of modules and dynamic assembly of modules to tackle complex tasks, such as mixture-of-experts. To highlight the inherent efficiency and composability of the modular approach, we coin the term brick to represent each functional module, designating the modularized structure as configurable foundation models. In this paper, we offer a comprehensive overview and investigation of the construction, utilization, and limitation of configurable foundation models. We first formalize modules into emergent bricks - functional neuron partitions that emerge during the pre-training phase, and customized bricks - bricks constructed via additional post-training to improve the capabilities and knowledge of LLMs. Based on diverse functional bricks, we further present four brick-oriented operations: retrieval and routing, merging, updating, and growing. These operations allow for dynamic configuration of LLMs based on instructions to handle complex tasks. To verify our perspective, we conduct an empirical analysis on widely-used LLMs. We find that the FFN layers follow modular patterns with functional specialization of neurons and functional neuron partitions. Finally, we highlight several open issues and directions for future research. Overall, this paper aims to offer a fresh modular perspective on existing LLM research and inspire the future creation of more efficient and scalable foundational models.
Related papers
- On Evaluating LLMs' Capabilities as Functional Approximators: A Bayesian Perspective [37.51471397123902]
We propose a new evaluation framework to comprehensively assess Large Language Models' function modeling abilities.
By adopting a Bayesian perspective of function modeling, we discover that LLMs are relatively weak in understanding patterns in raw data, but excel at utilizing prior knowledge about the domain to develop a strong understanding of the underlying function.
arXiv Detail & Related papers (2024-10-06T16:30:47Z) - Is Modularity Transferable? A Case Study through the Lens of Knowledge Distillation [59.37775534633868]
We present an extremely straightforward approach to transferring pre-trained, task-specific PEFT modules between same-family PLMs.
We also propose a method that allows the transfer of modules between incompatible PLMs without any change in the inference complexity.
arXiv Detail & Related papers (2024-03-27T17:50:00Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - From Static to Dynamic: A Continual Learning Framework for Large
Language Models [41.59643329735528]
This paper presents DynaMind, a novel continual learning framework for large language models (LLMs)
DynaMind incorporates memory mechanisms to assimilate new knowledge and modular operators to enhance the model inference process.
Benchmark experiments demonstrate DynaMind's effectiveness in overcoming these challenges.
arXiv Detail & Related papers (2023-10-22T10:18:53Z) - Improving Planning with Large Language Models: A Modular Agentic Architecture [7.63815864256878]
Large language models (LLMs) often struggle with tasks that require multi-step reasoning or goal-directed planning.
We propose an agentic architecture, the Modular Agentic Planner (MAP), in which planning is accomplished via the recurrent interaction of specialized modules.
We find that MAP yields significant improvements over both standard LLM methods.
arXiv Detail & Related papers (2023-09-30T00:10:14Z) - ModuleFormer: Modularity Emerges from Mixture-of-Experts [60.6148988099284]
This paper proposes a new neural network architecture, ModuleFormer, to improve the efficiency and flexibility of large language models.
Unlike the previous SMoE-based modular language model, ModuleFormer can induce modularity from uncurated data.
arXiv Detail & Related papers (2023-06-07T17:59:57Z) - Modular Deep Learning [120.36599591042908]
Transfer learning has recently become the dominant paradigm of machine learning.
It remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference.
Modular deep learning has emerged as a promising solution to these challenges.
arXiv Detail & Related papers (2023-02-22T18:11:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.