Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors
- URL: http://arxiv.org/abs/2409.02979v3
- Date: Sat, 21 Sep 2024 23:04:29 GMT
- Title: Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors
- Authors: Haiyu Wu, Jaskirat Singh, Sicong Tian, Liang Zheng, Kevin W. Bowyer,
- Abstract summary: Vec2Face is a holistic model that uses only a sampled vector as input.
Vec2Face is supervised by face image reconstruction and can be conveniently used in inference.
Vec2Face has efficiently synthesized as many as 300K identities with 15 million total images.
- Score: 19.02273216268032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies how to synthesize face images of non-existent persons, to create a dataset that allows effective training of face recognition (FR) models. Two important goals are (1) the ability to generate a large number of distinct identities (inter-class separation) with (2) a wide variation in appearance of each identity (intra-class variation). However, existing works 1) are typically limited in how many well-separated identities can be generated and 2) either neglect or use a separate editing model for attribute augmentation. We propose Vec2Face, a holistic model that uses only a sampled vector as input and can flexibly generate and control face images and their attributes. Composed of a feature masked autoencoder and a decoder, Vec2Face is supervised by face image reconstruction and can be conveniently used in inference. Using vectors with low similarity among themselves as inputs, Vec2Face generates well-separated identities. Randomly perturbing an input identity vector within a small range allows Vec2Face to generate faces of the same identity with robust variation in face attributes. It is also possible to generate images with designated attributes by adjusting vector values with a gradient descent method. Vec2Face has efficiently synthesized as many as 300K identities with 15 million total images, whereas 60K is the largest number of identities created in the previous works. FR models trained with the generated HSFace datasets, from 10k to 300k identities, achieve state-of-the-art accuracy, from 92% to 93.52%, on five real-world test sets. For the first time, our model created using a synthetic training set achieves higher accuracy than the model created using a same-scale training set of real face images (on the CALFW test set).
Related papers
- OSDFace: One-Step Diffusion Model for Face Restoration [72.5045389847792]
Diffusion models have demonstrated impressive performance in face restoration.
We propose OSDFace, a novel one-step diffusion model for face restoration.
Results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics.
arXiv Detail & Related papers (2024-11-26T07:07:48Z) - G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
Reversible face anonymization seeks to replace sensitive identity information in facial images with synthesized alternatives.
This paper introduces Gtextsuperscript2Face, which leverages both generative and geometric priors to enhance identity manipulation.
Our method outperforms existing state-of-the-art techniques in face anonymization and recovery, while preserving high data utility.
arXiv Detail & Related papers (2024-08-18T12:36:47Z) - Arc2Face: A Foundation Model for ID-Consistent Human Faces [95.00331107591859]
Arc2Face is an identity-conditioned face foundation model.
It can generate diverse photo-realistic images with an unparalleled degree of face similarity than existing models.
arXiv Detail & Related papers (2024-03-18T10:32:51Z) - StableIdentity: Inserting Anybody into Anywhere at First Sight [57.99693188913382]
We propose StableIdentity, which allows identity-consistent recontextualization with just one face image.
We are the first to directly inject the identity learned from a single image into video/3D generation without finetuning.
arXiv Detail & Related papers (2024-01-29T09:06:15Z) - MFIM: Megapixel Facial Identity Manipulation [0.6091702876917281]
We propose a novel face-swapping framework called Megapixel Facial Identity Manipulation (MFIM)
Our model exploits pretrained StyleGAN in the manner of GAN-inversion to effectively generate a megapixel image.
We show that our model achieves state-of-the-art performance through extensive experiments.
arXiv Detail & Related papers (2023-08-03T04:36:48Z) - DCFace: Synthetic Face Generation with Dual Condition Diffusion Model [18.662943303044315]
We propose a Dual Condition Face Generator (DCFace) based on a diffusion model.
Our novel Patch-wise style extractor and Time-step dependent ID loss enables DCFace to consistently produce face images of the same subject under different styles with precise control.
arXiv Detail & Related papers (2023-04-14T11:31:49Z) - Generating 2D and 3D Master Faces for Dictionary Attacks with a
Network-Assisted Latent Space Evolution [68.8204255655161]
A master face is a face image that passes face-based identity authentication for a high percentage of the population.
We optimize these faces for 2D and 3D face verification models.
In 3D, we generate faces using the 2D StyleGAN2 generator and predict a 3D structure using a deep 3D face reconstruction network.
arXiv Detail & Related papers (2022-11-25T09:15:38Z) - Training face verification models from generated face identity data [2.557825816851682]
We consider an approach to increase the privacy protection of data sets, as applied to face recognition.
We build on the StyleGAN generative adversarial network and feed it with latent codes combining two distinct sub-codes.
We find that the addition of a small amount of private data greatly improves the performance of our model.
arXiv Detail & Related papers (2021-08-02T12:00:01Z) - ShapeEditer: a StyleGAN Encoder for Face Swapping [6.848723869850855]
We propose a novel encoder, called ShapeEditor, for high-resolution, realistic and high-fidelity face exchange.
Our key idea is to use an advanced pretrained high-quality random face image generator, i.e. StyleGAN, as backbone.
For learning to map into the latent space of StyleGAN, we propose a set of self-supervised loss functions.
arXiv Detail & Related papers (2021-06-26T09:38:45Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
We propose a 3D model-assisted domain-transferred face augmentation network (DotFAN)
DotFAN can generate a series of variants of an input face based on the knowledge distilled from existing rich face datasets collected from other domains.
Experiments show that DotFAN is beneficial for augmenting small face datasets to improve their within-class diversity.
arXiv Detail & Related papers (2020-02-23T08:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.