A Scalable Matrix Visualization for Understanding Tree Ensemble Classifiers
- URL: http://arxiv.org/abs/2409.03164v1
- Date: Thu, 5 Sep 2024 01:48:11 GMT
- Title: A Scalable Matrix Visualization for Understanding Tree Ensemble Classifiers
- Authors: Zhen Li, Weikai Yang, Jun Yuan, Jing Wu, Changjian Chen, Yao Ming, Fan Yang, Hui Zhang, Shixia Liu,
- Abstract summary: This paper introduces a scalable visual analysis method to explain tree ensemble classifiers that contain tens of thousands of rules.
We develop an anomaly-biased model reduction method to prioritize these rules at each hierarchical level.
Our method fosters a deeper understanding of both common and anomalous rules, thereby enhancing interpretability without sacrificing comprehensiveness.
- Score: 20.416696003269674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The high performance of tree ensemble classifiers benefits from a large set of rules, which, in turn, makes the models hard to understand. To improve interpretability, existing methods extract a subset of rules for approximation using model reduction techniques. However, by focusing on the reduced rule set, these methods often lose fidelity and ignore anomalous rules that, despite their infrequency, play crucial roles in real-world applications. This paper introduces a scalable visual analysis method to explain tree ensemble classifiers that contain tens of thousands of rules. The key idea is to address the issue of losing fidelity by adaptively organizing the rules as a hierarchy rather than reducing them. To ensure the inclusion of anomalous rules, we develop an anomaly-biased model reduction method to prioritize these rules at each hierarchical level. Synergized with this hierarchical organization of rules, we develop a matrix-based hierarchical visualization to support exploration at different levels of detail. Our quantitative experiments and case studies demonstrate how our method fosters a deeper understanding of both common and anomalous rules, thereby enhancing interpretability without sacrificing comprehensiveness.
Related papers
- SoFA: Shielded On-the-fly Alignment via Priority Rule Following [90.32819418613407]
This paper introduces a novel alignment paradigm, priority rule following, which defines rules as the primary control mechanism in each dialog.
We present PriorityDistill, a semi-automated approach for distilling priority following signals from simulations to ensure robust rule integration and adherence.
arXiv Detail & Related papers (2024-02-27T09:52:27Z) - Probabilistic Truly Unordered Rule Sets [4.169915659794567]
We propose TURS, for Truly Unordered Rule Sets.
We exploit the probabilistic properties of our rule sets, with the intuition of only allowing rules to overlap if they have similar probabilistic outputs.
We benchmark against a wide range of rule-based methods and demonstrate that our method learns rule sets that have lower model complexity and highly competitive predictive performance.
arXiv Detail & Related papers (2024-01-18T12:03:19Z) - On Regularization and Inference with Label Constraints [62.60903248392479]
We compare two strategies for encoding label constraints in a machine learning pipeline, regularization with constraints and constrained inference.
For regularization, we show that it narrows the generalization gap by precluding models that are inconsistent with the constraints.
For constrained inference, we show that it reduces the population risk by correcting a model's violation, and hence turns the violation into an advantage.
arXiv Detail & Related papers (2023-07-08T03:39:22Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
We argue that the key to better performance lies in meaningful latent modality structures instead of perfect modality alignment.
Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization.
arXiv Detail & Related papers (2023-03-10T14:38:49Z) - Finding Alignments Between Interpretable Causal Variables and
Distributed Neural Representations [62.65877150123775]
Causal abstraction is a promising theoretical framework for explainable artificial intelligence.
Existing causal abstraction methods require a brute-force search over alignments between the high-level model and the low-level one.
We present distributed alignment search (DAS), which overcomes these limitations.
arXiv Detail & Related papers (2023-03-05T00:57:49Z) - Neuro-Symbolic Hierarchical Rule Induction [12.610497441047395]
We propose an efficient interpretable neuro-symbolic model to solve Inductive Logic Programming (ILP) problems.
In this model, which is built from a set of meta-rules organised in a hierarchical structure, first-order rules are invented by learning embeddings to match facts and body predicates of a meta-rule.
We empirically validate our model on various tasks (ILP, visual genome, reinforcement learning) against several state-of-the-art methods.
arXiv Detail & Related papers (2021-12-26T17:02:14Z) - Rule Generation for Classification: Scalability, Interpretability, and Fairness [0.0]
We propose a new rule-based optimization method for classification with constraints.
We address interpretability and fairness by assigning cost coefficients to the rules and introducing additional constraints.
The proposed method exhibits a good compromise between local interpretability and fairness on the one side, and accuracy on the other side.
arXiv Detail & Related papers (2021-04-21T20:31:28Z) - Rewriting a Deep Generative Model [56.91974064348137]
We introduce a new problem setting: manipulation of specific rules encoded by a deep generative model.
We propose a formulation in which the desired rule is changed by manipulating a layer of a deep network as a linear associative memory.
We present a user interface to enable users to interactively change the rules of a generative model to achieve desired effects.
arXiv Detail & Related papers (2020-07-30T17:58:16Z) - Building Rule Hierarchies for Efficient Logical Rule Learning from
Knowledge Graphs [20.251630903853016]
We propose new methods for pruning unpromising rules using rule hierarchies.
We show that the application of HPMs is effective in removing unpromising rules.
arXiv Detail & Related papers (2020-06-29T16:33:30Z) - Diverse Rule Sets [20.170305081348328]
Rule-based systems are experiencing a renaissance owing to their intuitive if-then representation.
We propose a novel approach of inferring diverse rule sets, by optimizing small overlap among decision rules.
We then devise an efficient randomized algorithm, which samples rules that are highly discriminative and have small overlap.
arXiv Detail & Related papers (2020-06-17T14:15:25Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
We propose Explainable Matrix (ExMatrix), a novel visualization method for Random Forest (RF) interpretability.
It employs a simple yet powerful matrix-like visual metaphor, where rows are rules, columns are features, and cells are rules predicates.
ExMatrix applicability is confirmed via different examples, showing how it can be used in practice to promote RF models interpretability.
arXiv Detail & Related papers (2020-05-08T21:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.