xLAM: A Family of Large Action Models to Empower AI Agent Systems
- URL: http://arxiv.org/abs/2409.03215v1
- Date: Thu, 5 Sep 2024 03:22:22 GMT
- Title: xLAM: A Family of Large Action Models to Empower AI Agent Systems
- Authors: Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Awalgaonkar, Rithesh Murthy, Eric Hu, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan Wang, Silvio Savarese, Caiming Xiong,
- Abstract summary: We release xLAM, a series of large action models designed for AI agent tasks.
xLAM consistently delivers exceptional performance across multiple agent ability benchmarks.
- Score: 111.5719694445345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous agents powered by large language models (LLMs) have attracted significant research interest. However, the open-source community faces many challenges in developing specialized models for agent tasks, driven by the scarcity of high-quality agent datasets and the absence of standard protocols in this area. We introduce and publicly release xLAM, a series of large action models designed for AI agent tasks. The xLAM series includes five models with both dense and mixture-of-expert architectures, ranging from 1B to 8x22B parameters, trained using a scalable, flexible pipeline that unifies, augments, and synthesizes diverse datasets to enhance AI agents' generalizability and performance across varied environments. Our experimental results demonstrate that xLAM consistently delivers exceptional performance across multiple agent ability benchmarks, notably securing the 1st position on the Berkeley Function-Calling Leaderboard, outperforming GPT-4, Claude-3, and many other models in terms of tool use. By releasing the xLAM series, we aim to advance the performance of open-source LLMs for autonomous AI agents, potentially accelerating progress and democratizing access to high-performance models for agent tasks. Models are available at https://huggingface.co/collections/Salesforce/xlam-models-65f00e2a0a63bbcd1c2dade4
Related papers
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
This paper explores collaborative AI systems that use to enhance performance to integrate models, data sources, and pipelines to solve complex and diverse tasks.
We introduce GenAgent, an LLM-based framework that automatically generates complex, offering greater flexibility and scalability compared to monolithic models.
The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - xGen-MM (BLIP-3): A Family of Open Large Multimodal Models [157.44696790158784]
This report introduces xGen-MM, a framework for developing Large Multimodal Models (LMMs)
The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs.
Our models undergo rigorous evaluation across a range of tasks, including both single and multi-image benchmarks.
arXiv Detail & Related papers (2024-08-16T17:57:01Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
Large Multimodal Models (LMMs) have ushered in a new era in artificial intelligence, merging capabilities in both language and vision to form highly capable Visual Foundation Agents.
Existing benchmarks fail to sufficiently challenge or showcase the full potential of LMMs in complex, real-world environments.
VisualAgentBench (VAB) is a pioneering benchmark specifically designed to train and evaluate LMMs as visual foundation agents.
arXiv Detail & Related papers (2024-08-12T17:44:17Z) - Coalitions of Large Language Models Increase the Robustness of AI Agents [3.216132991084434]
Large Language Models (LLMs) have fundamentally altered the way we interact with digital systems.
LLMs are powerful and capable of demonstrating some emergent properties, but struggle to perform well at all sub-tasks carried out by an AI agent.
We assess if a system comprising of a coalition of pretrained LLMs, each exhibiting specialised performance at individual sub-tasks, can match the performance of single model agents.
arXiv Detail & Related papers (2024-08-02T16:37:44Z) - Arcee's MergeKit: A Toolkit for Merging Large Language Models [0.6374098147778188]
MergeKit is a framework to efficiently merge models on any hardware.
To date, thousands of models have been merged by the open-source community.
arXiv Detail & Related papers (2024-03-20T02:38:01Z) - ModelGPT: Unleashing LLM's Capabilities for Tailored Model Generation [35.160964210941955]
We propose ModelGPT, a framework designed to determine and generate AI models tailored to the data or task descriptions provided by the user.
Given user requirements, ModelGPT is able to provide tailored models at most 270x faster than the previous paradigms.
arXiv Detail & Related papers (2024-02-18T11:24:34Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - TrainerAgent: Customizable and Efficient Model Training through
LLM-Powered Multi-Agent System [14.019244136838017]
TrainerAgent is a multi-agent framework including Task, Data, Model and Server agents.
These agents analyze user-defined tasks, input data, and requirements (e.g., accuracy, speed), optimizing them from both data and model perspectives to obtain satisfactory models, and finally deploy these models as online service.
This research presents a significant advancement in achieving desired models with increased efficiency and quality as compared to traditional model development.
arXiv Detail & Related papers (2023-11-11T17:39:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.