MaskVal: Simple but Effective Uncertainty Quantification for 6D Pose Estimation
- URL: http://arxiv.org/abs/2409.03556v1
- Date: Thu, 5 Sep 2024 14:17:01 GMT
- Title: MaskVal: Simple but Effective Uncertainty Quantification for 6D Pose Estimation
- Authors: Philipp Quentin, Daniel Goehring,
- Abstract summary: We investigate a simple but effective uncertainty quantification, that we call MaskVal, for 6D pose estimation.
Despite its simplicity, MaskVal significantly outperforms a state-of-the-art ensemble method on both a dataset and a robotic setup.
We show that by using MaskVal, the performance of a state-of-the-art 6D pose estimator is significantly improved towards a safe and reliable operation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For the use of 6D pose estimation in robotic applications, reliable poses are of utmost importance to ensure a safe, reliable and predictable operational performance. Despite these requirements, state-of-the-art 6D pose estimators often do not provide any uncertainty quantification for their pose estimates at all, or if they do, it has been shown that the uncertainty provided is only weakly correlated with the actual true error. To address this issue, we investigate a simple but effective uncertainty quantification, that we call MaskVal, which compares the pose estimates with their corresponding instance segmentations by rendering and does not require any modification of the pose estimator itself. Despite its simplicity, MaskVal significantly outperforms a state-of-the-art ensemble method on both a dataset and a robotic setup. We show that by using MaskVal, the performance of a state-of-the-art 6D pose estimator is significantly improved towards a safe and reliable operation. In addition, we propose a new and specific approach to compare and evaluate uncertainty quantification methods for 6D pose estimation in the context of robotic manipulation.
Related papers
- Any6D: Model-free 6D Pose Estimation of Novel Objects [76.30057578269668]
We introduce Any6D, a model-free framework for 6D object pose estimation.
It requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes.
We evaluate our method on five challenging datasets.
arXiv Detail & Related papers (2025-03-24T13:46:21Z) - Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding [55.32861154245772]
Calib3D is a pioneering effort to benchmark and scrutinize the reliability of 3D scene understanding models.
We evaluate 28 state-of-the-art models across 10 diverse 3D datasets.
We introduce DeptS, a novel depth-aware scaling approach aimed at enhancing 3D model calibration.
arXiv Detail & Related papers (2024-03-25T17:59:59Z) - Uncertainty Quantification with Deep Ensembles for 6D Object Pose Estimation [4.2603120588176635]
We propose a method to quantify the uncertainty of multi-stage 6D object pose estimation approaches with deep ensembles.
For the implementation, we choose SurfEmb as representative, since it is one of the top-performing 6D object pose estimation approaches.
arXiv Detail & Related papers (2024-03-12T15:19:25Z) - PViT-6D: Overclocking Vision Transformers for 6D Pose Estimation with
Confidence-Level Prediction and Pose Tokens [0.0]
We explore the capabilities of Vision Transformers for direct 6D pose estimation through a tailored use of classification tokens.
We also introduce a simple method for determining pose confidence, which can be readily integrated into most 6D pose estimation frameworks.
arXiv Detail & Related papers (2023-11-29T10:27:56Z) - Learning to Estimate 6DoF Pose from Limited Data: A Few-Shot,
Generalizable Approach using RGB Images [60.0898989456276]
We present a new framework named Cas6D for few-shot 6DoF pose estimation that is generalizable and uses only RGB images.
To address the false positives of target object detection in the extreme few-shot setting, our framework utilizes a self-supervised pre-trained ViT to learn robust feature representations.
Experimental results on the LINEMOD and GenMOP datasets demonstrate that Cas6D outperforms state-of-the-art methods by 9.2% and 3.8% accuracy (Proj-5) under the 32-shot setting.
arXiv Detail & Related papers (2023-06-13T07:45:42Z) - Ambiguity-Aware Multi-Object Pose Optimization for Visually-Assisted
Robot Manipulation [17.440729138126162]
We present an ambiguity-aware 6D object pose estimation network, PrimA6D++, as a generic uncertainty prediction method.
The proposed method shows a significant performance improvement in T-LESS and YCB-Video datasets.
We further demonstrate real-time scene recognition capability for visually-assisted robot manipulation.
arXiv Detail & Related papers (2022-11-02T08:57:20Z) - Instance-specific 6-DoF Object Pose Estimation from Minimal Annotations [6.24717069374781]
We present a method to rapidly train and deploy a pipeline for estimating the continuous 6-DoF pose of an object from a single RGB image.
The key idea is to leverage known camera poses and rigid body geometry to partially automate the generation of a large labeled dataset.
The dataset, along with sufficient domain randomization, is then used to supervise the training of deep neural networks for predicting semantic keypoints.
arXiv Detail & Related papers (2022-07-27T03:00:28Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - Occlusion-Aware Self-Supervised Monocular 6D Object Pose Estimation [88.8963330073454]
We propose a novel monocular 6D pose estimation approach by means of self-supervised learning.
We leverage current trends in noisy student training and differentiable rendering to further self-supervise the model.
Our proposed self-supervision outperforms all other methods relying on synthetic data.
arXiv Detail & Related papers (2022-03-19T15:12:06Z) - VIPose: Real-time Visual-Inertial 6D Object Pose Tracking [3.44942675405441]
We introduce a novel Deep Neural Network (DNN) called VIPose to address the object pose tracking problem in real-time.
The key contribution is the design of a novel DNN architecture which fuses visual and inertial features to predict the objects' relative 6D pose.
The approach presents accuracy performances comparable to state-of-the-art techniques, but with additional benefit to be real-time.
arXiv Detail & Related papers (2021-07-27T06:10:23Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - Self6D: Self-Supervised Monocular 6D Object Pose Estimation [114.18496727590481]
We propose the idea of monocular 6D pose estimation by means of self-supervised learning.
We leverage recent advances in neural rendering to further self-supervise the model on unannotated real RGB-D data.
arXiv Detail & Related papers (2020-04-14T13:16:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.