1 Modular Parallel Manipulator for Long-Term Soft Robotic Data Collection
- URL: http://arxiv.org/abs/2409.03614v1
- Date: Thu, 5 Sep 2024 15:18:44 GMT
- Title: 1 Modular Parallel Manipulator for Long-Term Soft Robotic Data Collection
- Authors: Kiyn Chin, Carmel Majidi, Abhinav Gupta,
- Abstract summary: We propose a modular parallel robotic manipulation platform suitable for large-scale data collection.
The platform's modules consist of a pair of off-the-shelf electrical motors which actuate a customizable finger.
We validate the platform's ability to be used for policy gradient reinforcement learning directly on hardware in a benchmark 2D manipulation task.
- Score: 16.103025868841268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performing long-term experimentation or large-scale data collection for machine learning in the field of soft robotics is challenging, due to the hardware robustness and experimental flexibility required. In this work, we propose a modular parallel robotic manipulation platform suitable for such large-scale data collection and compatible with various soft-robotic fabrication methods. Considering the computational and theoretical difficulty of replicating the high-fidelity, faster-than-real-time simulations that enable large-scale data collection in rigid robotic systems, a robust soft-robotic hardware platform becomes a high priority development task for the field. The platform's modules consist of a pair of off-the-shelf electrical motors which actuate a customizable finger consisting of a compliant parallel structure. The parallel mechanism of the finger can be as simple as a single 3D-printed urethane or molded silicone bulk structure, due to the motors being able to fully actuate a passive structure. This design flexibility allows experimentation with soft mechanism varied geometries, bulk properties and surface properties. Additionally, while the parallel mechanism does not require separate electronics or additional parts, these can be included, and it can be constructed using multi-functional soft materials to study compatible soft sensors and actuators in the learning process. In this work, we validate the platform's ability to be used for policy gradient reinforcement learning directly on hardware in a benchmark 2D manipulation task. We additionally demonstrate compatibility with multiple fingers and characterize the design constraints for compatible extensions.
Related papers
- Learning to enhance multi-legged robot on rugged landscapes [7.956679144631909]
Multi-legged robots offer a promising solution forNavigating rugged landscapes.
Recent studies have shown that a linear controller can ensure reliable mobility on challenging terrains.
We develop a MuJoCo-based simulator tailored to this robotic platform and use the simulation to develop a reinforcement learning-based control framework.
arXiv Detail & Related papers (2024-09-14T15:53:08Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
In robotics, one approach to generate training data builds on simulations based on dynamics models derived from first principles.
Here, we leverage the imbalance in complexity of the dynamics to learn more sample-efficiently.
We validate our method on several challenging simulated tasks and demonstrate that it improves learning both alone and when combined with an existing hindsight algorithm.
arXiv Detail & Related papers (2023-03-03T21:55:04Z) - Orbit: A Unified Simulation Framework for Interactive Robot Learning
Environments [38.23943905182543]
We present Orbit, a unified and modular framework for robot learning powered by NVIDIA Isaac Sim.
It offers a modular design to create robotic environments with photo-realistic scenes and high-fidelity rigid and deformable body simulation.
We aim to support various research areas, including representation learning, reinforcement learning, imitation learning, and task and motion planning.
arXiv Detail & Related papers (2023-01-10T20:19:17Z) - Scientific Machine Learning for Modeling and Simulating Complex Fluids [0.0]
rheological equations relate internal stresses and deformations in complex fluids.
Data-driven models provide accessible alternatives to expensive first-principles models.
Development of similar models for complex fluids has lagged.
arXiv Detail & Related papers (2022-10-10T04:35:31Z) - Differentiable Simulation of Soft Multi-body Systems [99.4302215142673]
We develop a top-down matrix assembly algorithm within Projective Dynamics.
We derive a differentiable control framework for soft articulated bodies driven by muscles, joint torques, or pneumatic tubes.
arXiv Detail & Related papers (2022-05-03T20:03:22Z) - Learning physics-informed simulation models for soft robotic
manipulation: A case study with dielectric elastomer actuators [21.349079159359746]
Soft actuators offer a safe and adaptable approach to robotic tasks like gentle grasping and dexterous movement.
Creating accurate models to control such systems is challenging due to the complex physics of deformable materials.
This paper presents a framework that combines the advantages of differentiable simulator and Finite Element Method.
arXiv Detail & Related papers (2022-02-25T21:15:05Z) - Learning Material Parameters and Hydrodynamics of Soft Robotic Fish via
Differentiable Simulation [26.09104786491426]
Our framework allows high fidelity prediction of dynamic behavior for composite bi-morph bending structures in real hardware.
We demonstrate an experimentally-verified, fast optimization pipeline for learning the material parameters and hydrodynamics of our robots.
Although we focus on a specific application for underwater soft robots, our framework is applicable to any pneumatically actuated soft mechanism.
arXiv Detail & Related papers (2021-09-30T05:24:02Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
We propose Elastic Interaction of Particles (EIP) for tactile simulation.
EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact.
We further propose a tactile-visual perception network that enables information fusion between tactile data and visual images.
arXiv Detail & Related papers (2021-08-11T03:49:59Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
We introduce a new differentiable physics benchmark called PasticineLab.
In each task, the agent uses manipulators to deform the plasticine into the desired configuration.
We evaluate several existing reinforcement learning (RL) methods and gradient-based methods on this benchmark.
arXiv Detail & Related papers (2021-04-07T17:59:23Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
We describe a new concept for reproducible robotics research that integrates development and benchmarking.
One of the central components of this setup is the Duckietown Autolab, a standardized setup that is itself relatively low-cost and reproducible.
We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs.
arXiv Detail & Related papers (2020-09-09T15:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.