Iterative thresholding for non-linear learning in the strong $\varepsilon$-contamination model
- URL: http://arxiv.org/abs/2409.03703v1
- Date: Thu, 5 Sep 2024 16:59:56 GMT
- Title: Iterative thresholding for non-linear learning in the strong $\varepsilon$-contamination model
- Authors: Arvind Rathnashyam, Alex Gittens,
- Abstract summary: We derive approximation bounds for learning single neuron models using thresholded descent.
We also study the linear regression problem, where $sigma(mathbfx) = mathbfx$.
- Score: 3.309767076331365
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We derive approximation bounds for learning single neuron models using thresholded gradient descent when both the labels and the covariates are possibly corrupted adversarially. We assume the data follows the model $y = \sigma(\mathbf{w}^{*} \cdot \mathbf{x}) + \xi,$ where $\sigma$ is a nonlinear activation function, the noise $\xi$ is Gaussian, and the covariate vector $\mathbf{x}$ is sampled from a sub-Gaussian distribution. We study sigmoidal, leaky-ReLU, and ReLU activation functions and derive a $O(\nu\sqrt{\epsilon\log(1/\epsilon)})$ approximation bound in $\ell_{2}$-norm, with sample complexity $O(d/\epsilon)$ and failure probability $e^{-\Omega(d)}$. We also study the linear regression problem, where $\sigma(\mathbf{x}) = \mathbf{x}$. We derive a $O(\nu\epsilon\log(1/\epsilon))$ approximation bound, improving upon the previous $O(\nu)$ approximation bounds for the gradient-descent based iterative thresholding algorithms of Bhatia et al. (NeurIPS 2015) and Shen and Sanghavi (ICML 2019). Our algorithm has a $O(\textrm{polylog}(N,d)\log(R/\epsilon))$ runtime complexity when $\|\mathbf{w}^{*}\|_2 \leq R$, improving upon the $O(\text{polylog}(N,d)/\epsilon^2)$ runtime complexity of Awasthi et al. (NeurIPS 2022).
Related papers
- Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models [37.42736399673992]
A single-index model (SIM) is a function of the form $sigma(mathbfwast cdot mathbfx)$, where $sigma: mathbbR to mathbbR$ is a known link function and $mathbfwast$ is a hidden unit vector.
We show that a proper learner attains $L2$-error of $O(mathrmOPT)+epsilon$, where $
arXiv Detail & Related papers (2024-11-08T17:10:38Z) - Sample-Efficient Linear Regression with Self-Selection Bias [7.605563562103568]
We consider the problem of linear regression with self-selection bias in the unknown-index setting.
We provide a novel and near optimally sample-efficient (in terms of $k$) algorithm to recover $mathbfw_1,ldots,mathbfw_kin.
Our algorithm succeeds under significantly relaxed noise assumptions, and therefore also succeeds in the related setting of max-linear regression.
arXiv Detail & Related papers (2024-02-22T02:20:24Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Robust Gaussian Covariance Estimation in Nearly-Matrix Multiplication
Time [14.990725929840892]
We show an algorithm that runs in time $widetildeO(T(N, d) log kappa / mathrmpoly (varepsilon))$, where $T(N, d)$ is the time it takes to multiply a $d times N$ matrix by its transpose.
Our runtime matches that of the fastest algorithm for covariance estimation without outliers, up to poly-logarithmic factors.
arXiv Detail & Related papers (2020-06-23T20:21:27Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.