Better bounds on Grothendieck constants of finite orders
- URL: http://arxiv.org/abs/2409.03739v1
- Date: Thu, 5 Sep 2024 17:53:52 GMT
- Title: Better bounds on Grothendieck constants of finite orders
- Authors: Sébastien Designolle, Tamás Vértesi, Sebastian Pokutta,
- Abstract summary: We exploit a recent Frank-Wolfe approach to provide good candidates for lower bounding some Grothendieck constants.
The complete proof relies on solving difficult binary quadratic optimisation problems.
- Score: 20.068273625719943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grothendieck constants $K_G(d)$ bound the advantage of $d$-dimensional strategies over $1$-dimensional ones in a specific optimisation task. They have applications ranging from approximation algorithms to quantum nonlocality. However, apart from $d=2$, their values are unknown. Here, we exploit a recent Frank-Wolfe approach to provide good candidates for lower bounding some of these constants. The complete proof relies on solving difficult binary quadratic optimisation problems. For $d\in\{3,4,5\}$, we construct specific rectangular instances that we can solve to certify better bounds than those previously known; by monotonicity, our lower bounds improve on the state of the art for $d\leqslant9$. For $d\in\{4,7,8\}$, we exploit elegant structures to build highly symmetric instances achieving even greater bounds; however, we can only solve them heuristically. We also recall the standard relation with violations of Bell inequalities and elaborate on it to interpret generalised Grothendieck constants $K_G(d\mapsto2)$ as the advantage of complex quantum mechanics over real quantum mechanics. Motivated by this connection, we also improve the bounds on $K_G(d\mapsto2)$.
Related papers
- Efficient Quantum State Synthesis with One Query [0.0]
We present a time analogue quantum algorithm making a single query (in superposition) to a classical oracle.
We prove that every $n$-qubit state can be constructed to within 0.01 error by an $On/n)$-size circuit over an appropriate finite gate set.
arXiv Detail & Related papers (2023-06-02T17:49:35Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - Grothendieck bound in a single quantum system [0.0]
Grothendieck's bound is used in the context of a single quantum system.
The Grothendieck theorem is reformulated here in terms of arbitrary matrices.
arXiv Detail & Related papers (2022-12-22T13:06:31Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - Improved upper bounds on the stabilizer rank of magic states [0.0]
improvement is obtained by establishing a new upper bound on the stabilizer rank of $m$ copies of the magic state $|Trangle=sqrt2-1(|0rangle+eipi/4|1rangle)$ in the limit of large $m$.
We obtain a strong simulation algorithm for circuits consisting of Clifford gates and $m$ instances of any (fixed) single-qubit $Z$-rotation gate with runtime $textpoly(n,m) 2m/2$.
arXiv Detail & Related papers (2021-06-14T20:20:51Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Lower Bounds and Accelerated Algorithms for Bilevel Optimization [62.192297758346484]
Bilevel optimization has recently attracted growing interests due to its wide applications in modern machine learning problems.
We show that our results are more challenging than that of minimax applications.
arXiv Detail & Related papers (2021-02-07T21:46:29Z) - Epsilon-nets, unitary designs and random quantum circuits [0.11719282046304676]
Epsilon-nets and approximate unitary $t$-designs are notions of unitary operations relevant for numerous applications in quantum information and quantum computing.
We prove that for a fixed $d$ of the space, unitaries constituting $delta$-approx $t$-expanders form $epsilon$-nets for $tsimeqfracd5/2epsilon$ and $delta=left(fracepsilon3/2dright)d2$.
We show that approximate tdesigns can be generated
arXiv Detail & Related papers (2020-07-21T15:16:28Z) - Second-Order Information in Non-Convex Stochastic Optimization: Power
and Limitations [54.42518331209581]
We find an algorithm which finds.
epsilon$-approximate stationary point (with $|nabla F(x)|le epsilon$) using.
$(epsilon,gamma)$surimate random random points.
Our lower bounds here are novel even in the noiseless case.
arXiv Detail & Related papers (2020-06-24T04:41:43Z) - Quasi-polynomial time algorithms for free quantum games in bounded
dimension [11.56707165033]
We give a semidefinite program of size $exp(mathcalObig(T12(log2(AT)+log(Q)log(AT))/epsilon2big)) to compute additive $epsilon$-approximations on the values of two-player free games.
We make a connection to the quantum separability problem and employ improved multipartite quantum de Finetti theorems with linear constraints.
arXiv Detail & Related papers (2020-05-18T16:55:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.