How Do Your Code LLMs Perform? Empowering Code Instruction Tuning with High-Quality Data
- URL: http://arxiv.org/abs/2409.03810v1
- Date: Thu, 5 Sep 2024 17:46:30 GMT
- Title: How Do Your Code LLMs Perform? Empowering Code Instruction Tuning with High-Quality Data
- Authors: Yejie Wang, Keqing He, Dayuan Fu, Zhuoma Gongque, Heyang Xu, Yanxu Chen, Zhexu Wang, Yujia Fu, Guanting Dong, Muxi Diao, Jingang Wang, Mengdi Zhang, Xunliang Cai, Weiran Xu,
- Abstract summary: We find that many datasets suffer from severe data leakage.
This discovery reveals a new challenge: identifying which dataset genuinely qualify as high-quality code instruction data.
We present XCoder, a family of models finetuned from LLaMA3.
- Score: 26.836532205017104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a growing interest in studying how to construct better code instruction tuning data. However, we observe Code models trained with these datasets exhibit high performance on HumanEval but perform worse on other benchmarks such as LiveCodeBench. Upon further investigation, we find that many datasets suffer from severe data leakage. After cleaning up most of the leaked data, some well-known high-quality datasets perform poorly. This discovery reveals a new challenge: identifying which dataset genuinely qualify as high-quality code instruction data. To address this, we propose an efficient code data pruning strategy for selecting good samples. Our approach is based on three dimensions: instruction complexity, response quality, and instruction diversity. Based on our selected data, we present XCoder, a family of models finetuned from LLaMA3. Our experiments show XCoder achieves new state-of-the-art performance using fewer training data, which verify the effectiveness of our data strategy. Moreover, we perform a comprehensive analysis on the data composition and find existing code datasets have different characteristics according to their construction methods, which provide new insights for future code LLMs. Our models and dataset are released in https://github.com/banksy23/XCoder
Related papers
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - DA-Code: Agent Data Science Code Generation Benchmark for Large Language Models [36.266383541354294]
This benchmark features three core elements: First, the tasks within DA-Code are inherently challenging, setting them apart from traditional code generation tasks.
Second, examples in DA-Code are all based on real and diverse data, covering a wide range of complex data wrangling and analytics tasks.
Third, to solve the tasks, the models must utilize complex data science programming languages, to perform intricate data processing and derive the answers.
arXiv Detail & Related papers (2024-10-09T18:00:05Z) - Training on the Benchmark Is Not All You Need [52.01920740114261]
We propose a simple and effective data leakage detection method based on the contents of multiple-choice options.
Our method is able to work under black-box conditions without access to model training data or weights.
We evaluate the degree of data leakage of 31 mainstream open-source LLMs on four benchmark datasets.
arXiv Detail & Related papers (2024-09-03T11:09:44Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
We present AlchemistCoder, a series of Code LLMs with enhanced code generation and generalization capabilities fine-tuned on multi-source data.
We propose incorporating the data construction process into the fine-tuning data as code comprehension tasks, including instruction evolution, data filtering, and code review.
arXiv Detail & Related papers (2024-05-29T16:57:33Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z) - Data Portraits: Recording Foundation Model Training Data [47.03896259762976]
Data Portraits are artifacts that record training data and allow for downstream inspection.
We document a popular language modeling corpus and a recently released code modeling dataset.
Our tool is lightweight and fast, costing only 3% of the dataset size in overhead.
arXiv Detail & Related papers (2023-03-06T04:22:33Z) - CodeExp: Explanatory Code Document Generation [94.43677536210465]
Existing code-to-text generation models produce only high-level summaries of code.
We conduct a human study to identify the criteria for high-quality explanatory docstring for code.
We present a multi-stage fine-tuning strategy and baseline models for the task.
arXiv Detail & Related papers (2022-11-25T18:05:44Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z) - On the Importance of Building High-quality Training Datasets for Neural
Code Search [15.557818317497397]
We propose a data cleaning framework consisting of two subsequent filters: a rule-based syntactic filter and a model-based semantic filter.
We evaluate the effectiveness of our framework on two widely-used code search models and three manually-annotated code retrieval benchmarks.
arXiv Detail & Related papers (2022-02-14T12:02:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.