Sirius: Contextual Sparsity with Correction for Efficient LLMs
- URL: http://arxiv.org/abs/2409.03856v1
- Date: Thu, 5 Sep 2024 18:38:07 GMT
- Title: Sirius: Contextual Sparsity with Correction for Efficient LLMs
- Authors: Yang Zhou, Zhuoming Chen, Zhaozhuo Xu, Victoria Lin, Beidi Chen,
- Abstract summary: Contextual Sparsity (CS) is appealing for its training-free nature and its ability to reach a higher compression ratio seemingly without quality degradation.
Despite the gap in end-to-end accuracy, we observed that sparse models often share general problem-solving logic.
This paper introduces Sirius, an efficient correction mechanism, which significantly recovers CS models quality on reasoning tasks.
- Score: 17.433112174650514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the blossom of large language models (LLMs), inference efficiency becomes increasingly important. Various approximation methods are proposed to reduce the cost at inference time. Contextual Sparsity (CS) is appealing for its training-free nature and its ability to reach a higher compression ratio seemingly without quality degradation. However, after a comprehensive evaluation of contextual sparsity methods on various complex generation tasks, we find that although CS succeeds in prompt-understanding tasks, CS significantly degrades the model performance for reasoning, deduction, and knowledge-based tasks. Despite the gap in end-to-end accuracy, we observed that sparse models often share general problem-solving logic and require only a few token corrections to recover the original model performance. This paper introduces Sirius, an efficient correction mechanism, which significantly recovers CS models quality on reasoning tasks while maintaining its efficiency gain. Sirius is evaluated on 6 models with 8 difficult generation tasks in reasoning, math, and coding and shows consistent effectiveness and efficiency. Also, we carefully develop a system implementation for Sirius and show that Sirius achieves roughly 20% reduction in latency for 8B model on-chip and 35% reduction for 70B model offloading. We open-source our implementation of Sirius at https://github.com/Infini-AI-Lab/Sirius.git.
Related papers
- Resource-Efficient Automatic Software Vulnerability Assessment via Knowledge Distillation and Particle Swarm Optimization [8.132644507041922]
We propose a novel resource-efficient framework that integrates knowledge distillation and particle swarm optimization to enable automated vulnerability assessment.<n>Our framework employs a two-stage approach: First, particle swarm optimization is utilized to optimize the architecture of a compact student model.<n>Second, knowledge distillation is applied to transfer critical vulnerability assessment knowledge from a large teacher model to the optimized student model.
arXiv Detail & Related papers (2025-07-30T13:55:28Z) - SwS: Self-aware Weakness-driven Problem Synthesis in Reinforcement Learning for LLM Reasoning [95.28059121743831]
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for training large language models (LLMs) on complex reasoning tasks.<n>We introduce a Self-aware Weakness-driven problem Synthesis framework (SwS) that systematically identifies model deficiencies and leverages them for problem augmentation.<n>SwS enables robust generalization byempowering the model to self-identify and address its weaknesses in RL, yielding average performance gains of 10.0% and 7.7% on 7B and 32B models.
arXiv Detail & Related papers (2025-06-10T17:02:00Z) - Boosting LLM Reasoning via Spontaneous Self-Correction [43.4980625253775]
One of the approaches for improving math reasoning is self-correction.<n>Existing self-correction approaches treat corrections as standalone post-generation refinements.<n>We propose SPOC, a spontaneous self-correction approach that enables LLMs to generate interleaved solutions and verifications in a single inference pass.
arXiv Detail & Related papers (2025-06-07T21:23:00Z) - Improving Data Efficiency for LLM Reinforcement Fine-tuning Through Difficulty-targeted Online Data Selection and Rollout Replay [61.823835392216544]
Reinforcement learning (RL) has become an effective approach for fine-tuning large language models (LLMs)<n>We propose two techniques to improve data efficiency in LLM RL fine-tuning: difficulty-targeted online data selection and rollout replay.<n>Our method reduces RL fine-tuning time by 25% to 65% to reach the same level of performance as the original GRPO algorithm.
arXiv Detail & Related papers (2025-06-05T17:55:43Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.
Our framework incorporates two complementary strategies: internal TTC and external TTC.
We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Self-Data Distillation for Recovering Quality in Pruned Large Language Models [1.5665059604715017]
One-shot pruning results in significant quality degradation, particularly in tasks requiring multi-step reasoning.
To recover lost quality, supervised fine-tuning (SFT) is commonly applied, but it can lead to catastrophic forgetting.
In this work, we utilize self-data distilled fine-tuning to address these challenges.
arXiv Detail & Related papers (2024-10-13T19:53:40Z) - Compressing Large Language Models with Automated Sub-Network Search [41.452512557226335]
We consider model compression for Large Language Models to reduce model size while improving downstream task performance.
We phrase this as a neural architecture search problem that automatically prunes structural components.
Our method achieves upto 9.85% improvement on average on 11 diverse downstream tasks, while achieving up to 22% improvement of on-device latency.
arXiv Detail & Related papers (2024-10-09T02:14:39Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors.
We introduce a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods.
Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR.
arXiv Detail & Related papers (2024-09-25T16:15:21Z) - Any Image Restoration with Efficient Automatic Degradation Adaptation [132.81912195537433]
We propose a unified manner to achieve joint embedding by leveraging the inherent similarities across various degradations for efficient and comprehensive restoration.
Our network sets new SOTA records while reducing model complexity by approximately -82% in trainable parameters and -85% in FLOPs.
arXiv Detail & Related papers (2024-07-18T10:26:53Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Zero-Shot Sharpness-Aware Quantization for Pre-trained Language Models [88.80146574509195]
Quantization is a promising approach for reducing memory overhead and accelerating inference.
We propose a novel-aware quantization (ZSAQ) framework for the zero-shot quantization of various PLMs.
arXiv Detail & Related papers (2023-10-20T07:09:56Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Quantized Adaptive Subgradient Algorithms and Their Applications [39.103587572626026]
We propose quantized composite mirror descent adaptive subgradient (QCMD adagrad) and quantized regularized dual average adaptive subgradient (QRDA adagrad) for distributed training.
A quantized gradient-based adaptive learning rate matrix is constructed to achieve a balance between communication costs, accuracy, and model sparsity.
arXiv Detail & Related papers (2022-08-11T04:04:03Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.