Qihoo-T2X: An Efficient Proxy-Tokenized Diffusion Transformer for Text-to-Any-Task
- URL: http://arxiv.org/abs/2409.04005v2
- Date: Fri, 4 Oct 2024 13:45:54 GMT
- Title: Qihoo-T2X: An Efficient Proxy-Tokenized Diffusion Transformer for Text-to-Any-Task
- Authors: Jing Wang, Ao Ma, Jiasong Feng, Dawei Leng, Yuhui Yin, Xiaodan Liang,
- Abstract summary: We propose the Proxy-Tokenized Diffusion Transformer (PT-DiT) to model global visual information efficiently.
Within each transformer block, we compute an averaging token from each spatial-temporal window to serve as a proxy token for that region.
We also introduce window and shift window attention to address the limitations in detail modeling caused by the sparse attention mechanism.
- Score: 42.422925759342874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The global self-attention mechanism in diffusion transformers involves redundant computation due to the sparse and redundant nature of visual information, and the attention map of tokens within a spatial window shows significant similarity. To address this redundancy, we propose the Proxy-Tokenized Diffusion Transformer (PT-DiT), which employs sparse representative token attention (where the number of representative tokens is much smaller than the total number of tokens) to model global visual information efficiently. Specifically, within each transformer block, we compute an averaging token from each spatial-temporal window to serve as a proxy token for that region. The global semantics are captured through the self-attention of these proxy tokens and then injected into all latent tokens via cross-attention. Simultaneously, we introduce window and shift window attention to address the limitations in detail modeling caused by the sparse attention mechanism. Building on the well-designed PT-DiT, we further develop the Qihoo-T2X family, which includes a variety of models for T2I, T2V, and T2MV tasks. Experimental results show that PT-DiT achieves competitive performance while reducing the computational complexity in both image and video generation tasks (e.g., a 49% reduction compared to DiT and a 34% reduction compared to PixArt-$\alpha$). The visual exhibition and source code of Qihoo-T2X is available at https://360cvgroup.github.io/Qihoo-T2X/.
Related papers
- Attamba: Attending To Multi-Token States [6.5676809841642125]
We introduce Attamba, a novel architecture that uses state-space models to compress chunks of tokens.
We find that replacing key and value projections in a transformer with SSMs can improve model quality and enable flexible token chunking.
Attamba can perform attention on chunked-sequences of variable length, enabling a smooth transition between quadratic and linear scaling.
arXiv Detail & Related papers (2024-11-26T18:52:06Z) - Dynamic Diffusion Transformer [67.13876021157887]
Diffusion Transformer (DiT) has demonstrated superior performance but suffers from substantial computational costs.
We propose Dynamic Diffusion Transformer (DyDiT), an architecture that dynamically adjusts its computation along both timestep and spatial dimensions during generation.
With 3% additional fine-tuning, our method reduces the FLOPs of DiT-XL by 51%, accelerates generation by 1.73, and achieves a competitive FID score of 2.07 on ImageNet.
arXiv Detail & Related papers (2024-10-04T14:14:28Z) - LookupViT: Compressing visual information to a limited number of tokens [36.83826969693139]
Vision Transformers (ViT) have emerged as the de-facto choice for numerous industry grade vision solutions.
But their inference cost can be prohibitive for many settings, as they compute self-attention in each layer which suffers from complexity in the number of tokens.
In this work, we introduce LookupViT, that exploits this information sparsity to reduce ViT inference cost.
arXiv Detail & Related papers (2024-07-17T17:22:43Z) - Making Vision Transformers Efficient from A Token Sparsification View [26.42498120556985]
We propose a novel Semantic Token ViT (STViT) for efficient global and local vision transformers.
Our method can achieve competitive results compared to the original networks in object detection and instance segmentation, with over 30% FLOPs reduction for backbone.
In addition, we design a STViT-R(ecover) network to restore the detailed spatial information based on the STViT, making it work for downstream tasks.
arXiv Detail & Related papers (2023-03-15T15:12:36Z) - Xformer: Hybrid X-Shaped Transformer for Image Denoising [114.37510775636811]
We present a hybrid X-shaped vision Transformer, named Xformer, which performs notably on image denoising tasks.
Xformer achieves state-of-the-art performance on the synthetic and real-world image denoising tasks.
arXiv Detail & Related papers (2023-03-11T16:32:09Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
Recently, DETR pioneered the solution vision tasks with transformers, it directly translates the image feature map into the object result.
Recent transformer-based image recognition model andTT show consistent efficiency gain.
arXiv Detail & Related papers (2021-09-15T01:10:30Z) - PSViT: Better Vision Transformer via Token Pooling and Attention Sharing [114.8051035856023]
We propose a PSViT: a ViT with token Pooling and attention Sharing to reduce the redundancy.
Experimental results show that the proposed scheme can achieve up to 6.6% accuracy improvement in ImageNet classification.
arXiv Detail & Related papers (2021-08-07T11:30:54Z) - XCiT: Cross-Covariance Image Transformers [73.33400159139708]
We propose a "transposed" version of self-attention that operates across feature channels rather than tokens.
The resulting cross-covariance attention (XCA) has linear complexity in the number of tokens, and allows efficient processing of high-resolution images.
arXiv Detail & Related papers (2021-06-17T17:33:35Z) - CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image
Classification [17.709880544501758]
We propose a dual-branch transformer to combine image patches of different sizes to produce stronger image features.
Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity.
Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise.
arXiv Detail & Related papers (2021-03-27T13:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.