Towards Energy-Efficiency by Navigating the Trilemma of Energy, Latency, and Accuracy
- URL: http://arxiv.org/abs/2409.04018v1
- Date: Fri, 6 Sep 2024 04:10:33 GMT
- Title: Towards Energy-Efficiency by Navigating the Trilemma of Energy, Latency, and Accuracy
- Authors: Boyuan Tian, Yihan Pang, Muhammad Huzaifa, Shenlong Wang, Sarita Adve,
- Abstract summary: Extended Reality (XR) enables immersive experiences through untethered headsets but suffers from stringent battery and resource constraints.
This paper examines scene reconstruction, a key building block for immersive XR experiences, and demonstrates how energy efficiency can be achieved.
- Score: 10.597365664501135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extended Reality (XR) enables immersive experiences through untethered headsets but suffers from stringent battery and resource constraints. Energy-efficient design is crucial to ensure both longevity and high performance in XR devices. However, latency and accuracy are often prioritized over energy, leading to a gap in achieving energy efficiency. This paper examines scene reconstruction, a key building block for immersive XR experiences, and demonstrates how energy efficiency can be achieved by navigating the trilemma of energy, latency, and accuracy. We explore three classes of energy-oriented optimizations, covering the algorithm, execution, and data, that reveal a broad design space through configurable parameters. Our resulting 72 designs expose a wide range of latency and energy trade-offs, with a smaller range of accuracy loss. We identify a Pareto-optimal curve and show that the designs on the curve are achievable only through synergistic co-optimization of all three optimization classes and by considering the latency and accuracy needs of downstream scene reconstruction consumers. Our analysis covering various use cases and measurements on an embedded class system shows that, relative to the baseline, our designs offer energy benefits of up to 60X with potential latency range of 4X slowdown to 2X speedup. Detailed exploration of a use case across representative data sequences from ScanNet showed about 25X energy savings with 1.5X latency reduction and negligible reconstruction quality loss.
Related papers
- TReX- Reusing Vision Transformer's Attention for Efficient Xbar-based Computing [12.583079680322156]
We propose TReX, an attention-reuse-driven ViT optimization framework.
We find that TReX achieves 2.3x (2.19x) EDAP reduction and 1.86x (1.79x) TOPS/mm2 improvement with 1% accuracy drop in case of DeiT-S (LV-ViT-S) ViT models.
On NLP tasks such as CoLA, TReX leads to 2% higher non-ideal accuracy compared to baseline at 1.6x lower EDAP.
arXiv Detail & Related papers (2024-08-22T21:51:38Z) - Unveiling Energy Efficiency in Deep Learning: Measurement, Prediction, and Scoring across Edge Devices [8.140572894424208]
We conduct a threefold study, including energy measurement, prediction, and efficiency scoring.
Firstly, we present a detailed, first-of-its-kind measurement study that uncovers the energy consumption characteristics of on-device deep learning.
Secondly, we design and implement the first kernel-level energy predictors for edge devices based on our kernel-level energy dataset.
arXiv Detail & Related papers (2023-10-19T23:55:00Z) - FemtoDet: An Object Detection Baseline for Energy Versus Performance
Tradeoffs [27.006082622843653]
Vision applications of convolutional neural networks, such as always-on surveillance cameras, are critical for energy constraints.
This paper aims to serve as a baseline by designing detectors to reach tradeoffs between energy and performance from two perspectives.
arXiv Detail & Related papers (2023-01-17T06:24:08Z) - Recurrent Vision Transformers for Object Detection with Event Cameras [62.27246562304705]
We present Recurrent Vision Transformers (RVTs), a novel backbone for object detection with event cameras.
RVTs can be trained from scratch to reach state-of-the-art performance on event-based object detection.
Our study brings new insights into effective design choices that can be fruitful for research beyond event-based vision.
arXiv Detail & Related papers (2022-12-11T20:28:59Z) - Data-Model-Circuit Tri-Design for Ultra-Light Video Intelligence on Edge
Devices [90.30316433184414]
We propose a data-model-hardware tri-design framework for high- throughput, low-cost, and high-accuracy MOT on HD video stream.
Compared to the state-of-the-art MOT baseline, our tri-design approach can achieve 12.5x latency reduction, 20.9x effective frame rate improvement, 5.83x lower power, and 9.78x better energy efficiency, without much accuracy drop.
arXiv Detail & Related papers (2022-10-16T16:21:40Z) - 3D Adapted Random Forest Vision (3DARFV) for Untangling
Heterogeneous-Fabric Exceeding Deep Learning Semantic Segmentation Efficiency
at the Utmost Accuracy [1.6020567943077142]
Analyzing 3D images requires many computations, causing efficiency to suffer lengthy processing time alongside large energy consumption.
This paper demonstrates the semantic segmentation capability of a probabilistic decision tree algorithm, 3D Adapted Random Forest Vision (3DARFV), exceeding deep learning algorithm efficiency at the utmost accuracy.
arXiv Detail & Related papers (2022-03-23T15:05:23Z) - Projected GANs Converge Faster [50.23237734403834]
Generative Adversarial Networks (GANs) produce high-quality images but are challenging to train.
We make significant headway on these issues by projecting generated and real samples into a fixed, pretrained feature space.
Our Projected GAN improves image quality, sample efficiency, and convergence speed.
arXiv Detail & Related papers (2021-11-01T15:11:01Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
We show that it is possible to improve the performance of a recently introduced efficient generator architecture solely with the application of our proposed loss functions.
We show that our losses' direct emphasis on the frequencies in Fourier-space significantly boosts the perceptual image quality.
The trained generator achieves comparable results with and is 2.4x and 48x faster than state-of-the-art perceptual SR methods RankSRGAN and SRFlow respectively.
arXiv Detail & Related papers (2021-06-01T20:34:52Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.