Learning to Learn Transferable Generative Attack for Person Re-Identification
- URL: http://arxiv.org/abs/2409.04208v1
- Date: Fri, 6 Sep 2024 11:57:17 GMT
- Title: Learning to Learn Transferable Generative Attack for Person Re-Identification
- Authors: Yuan Bian, Min Liu, Xueping Wang, Yunfeng Ma, Yaonan Wang,
- Abstract summary: Existing attacks merely consider cross-dataset and cross-model transferability, ignoring the cross-test capability to perturb models trained in different domains.
To powerfully examine the robustness of real-world re-id models, the Meta Transferable Generative Attack (MTGA) method is proposed.
Our MTGA outperforms the SOTA methods by 21.5% and 11.3% on mean mAP drop rate, respectively.
- Score: 17.26567195924685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based person re-identification (re-id) models are widely employed in surveillance systems and inevitably inherit the vulnerability of deep networks to adversarial attacks. Existing attacks merely consider cross-dataset and cross-model transferability, ignoring the cross-test capability to perturb models trained in different domains. To powerfully examine the robustness of real-world re-id models, the Meta Transferable Generative Attack (MTGA) method is proposed, which adopts meta-learning optimization to promote the generative attacker producing highly transferable adversarial examples by learning comprehensively simulated transfer-based cross-model\&dataset\&test black-box meta attack tasks. Specifically, cross-model\&dataset black-box attack tasks are first mimicked by selecting different re-id models and datasets for meta-train and meta-test attack processes. As different models may focus on different feature regions, the Perturbation Random Erasing module is further devised to prevent the attacker from learning to only corrupt model-specific features. To boost the attacker learning to possess cross-test transferability, the Normalization Mix strategy is introduced to imitate diverse feature embedding spaces by mixing multi-domain statistics of target models. Extensive experiments show the superiority of MTGA, especially in cross-model\&dataset and cross-model\&dataset\&test attacks, our MTGA outperforms the SOTA methods by 21.5\% and 11.3\% on mean mAP drop rate, respectively. The code of MTGA will be released after the paper is accepted.
Related papers
- IoTGeM: Generalizable Models for Behaviour-Based IoT Attack Detection [3.3772986620114387]
We present an approach for modelling IoT network attacks that focuses on generalizability, yet also leads to better detection and performance.
First, we present an improved rolling window approach for feature extraction, and introduce a multi-step feature selection process that reduces overfitting.
Second, we build and test models using isolated train and test datasets, thereby avoiding common data leaks.
Third, we rigorously evaluate our methodology using a diverse portfolio of machine learning models, evaluation metrics and datasets.
arXiv Detail & Related papers (2023-10-17T21:46:43Z) - Transferable Attack for Semantic Segmentation [59.17710830038692]
adversarial attacks, and observe that the adversarial examples generated from a source model fail to attack the target models.
We propose an ensemble attack for semantic segmentation to achieve more effective attacks with higher transferability.
arXiv Detail & Related papers (2023-07-31T11:05:55Z) - Unstoppable Attack: Label-Only Model Inversion via Conditional Diffusion
Model [14.834360664780709]
Model attacks (MIAs) aim to recover private data from inaccessible training sets of deep learning models.
This paper develops a novel MIA method, leveraging a conditional diffusion model (CDM) to recover representative samples under the target label.
Experimental results show that this method can generate similar and accurate samples to the target label, outperforming generators of previous approaches.
arXiv Detail & Related papers (2023-07-17T12:14:24Z) - Meta Generative Attack on Person Reidentification [0.0]
We propose a method with the goal of achieving better transferability against different models and across datasets.
We generate a mask to obtain better performance across models and use meta learning to boost the generalizability in the challenging cross-dataset cross-model setting.
arXiv Detail & Related papers (2023-01-16T07:08:51Z) - Query Efficient Cross-Dataset Transferable Black-Box Attack on Action
Recognition [99.29804193431823]
Black-box adversarial attacks present a realistic threat to action recognition systems.
We propose a new attack on action recognition that addresses these shortcomings by generating perturbations.
Our method achieves 8% and higher 12% deception rates compared to state-of-the-art query-based and transfer-based attacks.
arXiv Detail & Related papers (2022-11-23T17:47:49Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
We propose a novel perspective substitute training that focuses on designing the distribution of data used in the knowledge stealing process.
The combination of these two modules can further boost the consistency of the substitute model and target model, which greatly improves the effectiveness of adversarial attack.
arXiv Detail & Related papers (2021-04-26T07:26:29Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.