Spatial-Mode Diversity and Multiplexing for Continuous Variables Quantum Communications
- URL: http://arxiv.org/abs/2409.04334v1
- Date: Fri, 6 Sep 2024 15:10:10 GMT
- Title: Spatial-Mode Diversity and Multiplexing for Continuous Variables Quantum Communications
- Authors: Seid Koudia, Leonardo Oleynik, Mert Bayraktar, Junaid ur Rehman, Symeon Chatzinotas,
- Abstract summary: We investigate the performance of continuous-variable quantum communication systems employing diversity schemes.
We find that diversity schemes provide significant advantages over single-channel transmission in terms of fidelity.
For CV-QKD, we show that diversity can outperform multiplexing in terms of average secret key rate.
- Score: 31.406787669796184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the performance of continuous-variable (CV) quantum communication systems employing diversity schemes to mitigate the effects of realistic channel conditions, including Gaussian lossy channels, fading, and crosstalk. By modeling the transmittivity of the channel as a log-normal distribution, we account for the stochastic nature of fading. We analyze the impact of both post-processing amplification at the receiver and pre-amplification at the transmitter on the fidelity of the communication system. Our findings reveal that diversity schemes provide significant advantages over single-channel transmission in terms of fidelity, particularly in conditions of strong fading and high thermal background noise. We also explore the effect of crosstalk between channels and demonstrate that a noticeable advantage persists in scenarios of strong fading or thermal noise. For CV-QKD, we show that diversity can outperform multiplexing in terms of average secret key rate, revealing a diversity advantage over multiplexing in some regimes.
Related papers
- Enhancing teleportation via noisy channels: effects of the induced multipartite entanglement [0.0]
noisy channels acting on a bipartite resource state are considered.
Our analysis reveals that for a fixed entanglement of the resource state, the channels that better protect the teleportation fidelity against the detrimental effects of noise are those that generate higher amounts of (GHZ-type) multipartite entanglement.
arXiv Detail & Related papers (2024-04-14T03:30:14Z) - Benchmarking Semantic Communications for Image Transmission Over MIMO Interference Channels [11.108614988357008]
We propose an interference-robust semantic communication (IRSC) scheme for general multiple-input multiple-output (MIMO) interference channels.
This scheme involves the development of transceivers based on neural networks (NNs), which integrate channel state information (CSI) either solely at the receiver or at both transmitter and receiver ends.
Experimental results demonstrate that the proposed IRSC scheme effectively learns to mitigate interference and outperforms baseline approaches.
arXiv Detail & Related papers (2024-04-10T11:40:22Z) - From Similarity to Superiority: Channel Clustering for Time Series Forecasting [61.96777031937871]
We develop a novel and adaptable Channel Clustering Module ( CCM)
CCM dynamically groups channels characterized by intrinsic similarities and leverages cluster information instead of individual channel identities.
CCM can boost the performance of CI and CD models by an average margin of 2.4% and 7.2% on long-term and short-term forecasting, respectively.
arXiv Detail & Related papers (2024-03-31T02:46:27Z) - Semantic Entropy Can Simultaneously Benefit Transmission Efficiency and Channel Security of Wireless Semantic Communications [55.54210451136529]
We propose SemEntropy to explore semantics of data for both adaptive transmission and physical layer encryption.
We show that SemEntropy can keep the semantic accuracy remain 95% with 60% less transmission.
arXiv Detail & Related papers (2024-02-05T12:25:02Z) - Dance of Channel and Sequence: An Efficient Attention-Based Approach for
Multivariate Time Series Forecasting [3.372816393214188]
CSformer is an innovative framework characterized by a meticulously engineered two-stage self-attention mechanism.
We introduce sequence adapters and channel adapters, ensuring the model's ability to discern salient features across various dimensions.
arXiv Detail & Related papers (2023-12-11T09:10:38Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
Federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices.
Each link is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator.
Channel state information-based multiple-input multiple-output transmission module designed to combat channel fading and noise.
arXiv Detail & Related papers (2023-08-07T16:32:14Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Channel Simulation: Finite Blocklengths and Broadcast Channels [13.561997774592667]
We study channel simulation under common randomness assistance in the finite-blocklength regime.
We identify the smooth channel max-information as a linear program one-shot converse on the minimal simulation cost for fixed error tolerance.
arXiv Detail & Related papers (2022-12-22T13:08:55Z) - Machine Learning assisted excess noise suppression for
continuous-variable quantum key distribution [10.533604439090514]
An excess noise suppression scheme based on equalization is proposed.
In this scheme, the distorted signals can be corrected through equalization assisted by a neural network and pilot tone.
The experimental results show that the scheme can suppress the excess noise to a lower level, and has a significant performance improvement.
arXiv Detail & Related papers (2022-07-21T12:31:13Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Deep Multimodal Fusion by Channel Exchanging [87.40768169300898]
This paper proposes a parameter-free multimodal fusion framework that dynamically exchanges channels between sub-networks of different modalities.
The validity of such exchanging process is also guaranteed by sharing convolutional filters yet keeping separate BN layers across modalities, which, as an add-on benefit, allows our multimodal architecture to be almost as compact as a unimodal network.
arXiv Detail & Related papers (2020-11-10T09:53:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.