Thinking Outside the BBox: Unconstrained Generative Object Compositing
- URL: http://arxiv.org/abs/2409.04559v2
- Date: Wed, 11 Sep 2024 11:05:56 GMT
- Title: Thinking Outside the BBox: Unconstrained Generative Object Compositing
- Authors: Gemma Canet Tarrés, Zhe Lin, Zhifei Zhang, Jianming Zhang, Yizhi Song, Dan Ruta, Andrew Gilbert, John Collomosse, Soo Ye Kim,
- Abstract summary: We present a novel problem of unconstrained generative object compositing.
Our first-of-its-kind model is able to generate object effects such as shadows and reflections that go beyond the mask.
Our model outperforms existing object placement and compositing models in various quality metrics and user studies.
- Score: 36.86960274923344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compositing an object into an image involves multiple non-trivial sub-tasks such as object placement and scaling, color/lighting harmonization, viewpoint/geometry adjustment, and shadow/reflection generation. Recent generative image compositing methods leverage diffusion models to handle multiple sub-tasks at once. However, existing models face limitations due to their reliance on masking the original object during training, which constrains their generation to the input mask. Furthermore, obtaining an accurate input mask specifying the location and scale of the object in a new image can be highly challenging. To overcome such limitations, we define a novel problem of unconstrained generative object compositing, i.e., the generation is not bounded by the mask, and train a diffusion-based model on a synthesized paired dataset. Our first-of-its-kind model is able to generate object effects such as shadows and reflections that go beyond the mask, enhancing image realism. Additionally, if an empty mask is provided, our model automatically places the object in diverse natural locations and scales, accelerating the compositing workflow. Our model outperforms existing object placement and compositing models in various quality metrics and user studies.
Related papers
- DiffUHaul: A Training-Free Method for Object Dragging in Images [78.93531472479202]
We propose a training-free method, dubbed DiffUHaul, for the object dragging task.
We first apply attention masking in each denoising step to make the generation more disentangled across different objects.
In the early denoising steps, we interpolate the attention features between source and target images to smoothly fuse new layouts with the original appearance.
arXiv Detail & Related papers (2024-06-03T17:59:53Z) - Salient Object-Aware Background Generation using Text-Guided Diffusion Models [4.747826159446815]
We present a model for adapting inpainting diffusion models to the salient object outpainting task using Stable Diffusion and ControlNet architectures.
Our proposed approach reduces object expansion by 3.6x on average with no degradation in standard visual metrics across multiple datasets.
arXiv Detail & Related papers (2024-04-15T22:13:35Z) - Foreground-Background Separation through Concept Distillation from
Generative Image Foundation Models [6.408114351192012]
We present a novel method that enables the generation of general foreground-background segmentation models from simple textual descriptions.
We show results on the task of segmenting four different objects (humans, dogs, cars, birds) and a use case scenario in medical image analysis.
arXiv Detail & Related papers (2022-12-29T13:51:54Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPose is a method to estimate the 6D pose of novel objects, that is, objects unseen during training.
We present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects.
Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner.
arXiv Detail & Related papers (2022-12-13T19:30:03Z) - ObjectStitch: Generative Object Compositing [43.206123360578665]
We propose a self-supervised framework for object compositing using conditional diffusion models.
Our framework can transform the viewpoint, geometry, color and shadow of the generated object while requiring no manual labeling.
Our method outperforms relevant baselines in both realism and faithfulness of the synthesized result images in a user study on various real-world images.
arXiv Detail & Related papers (2022-12-02T02:15:13Z) - im2nerf: Image to Neural Radiance Field in the Wild [47.18702901448768]
im2nerf is a learning framework that predicts a continuous neural object representation given a single input image in the wild.
We show that im2nerf achieves the state-of-the-art performance for novel view synthesis from a single-view unposed image in the wild.
arXiv Detail & Related papers (2022-09-08T23:28:56Z) - Unsupervised Object Learning via Common Fate [61.14802390241075]
Learning generative object models from unlabelled videos is a long standing problem and required for causal scene modeling.
We decompose this problem into three easier subtasks, and provide candidate solutions for each of them.
We show that our approach allows learning generative models that generalize beyond the occlusions present in the input videos.
arXiv Detail & Related papers (2021-10-13T08:22:04Z) - Unsupervised Layered Image Decomposition into Object Prototypes [39.20333694585477]
We present an unsupervised learning framework for decomposing images into layers of automatically discovered object models.
We first validate our approach by providing results on par with the state of the art on standard multi-object synthetic benchmarks.
We then demonstrate the applicability of our model to real images in tasks that include clustering (SVHN, GTSRB), cosegmentation (Weizmann Horse) and object discovery from unfiltered social network images.
arXiv Detail & Related papers (2021-04-29T18:02:01Z) - Object-Centric Image Generation with Factored Depths, Locations, and
Appearances [30.541425619507184]
We present a generative model of images that explicitly reasons over the set of objects they show.
Our model learns a structured latent representation that separates objects from each other and from the background.
It can be trained from images alone in a purely unsupervised fashion without the need for object masks or depth information.
arXiv Detail & Related papers (2020-04-01T18:00:11Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
We develop a layout-to-image-generation method to generate complex scenes with multiple objects.
Our method learns representations of the spatial relationships between objects in the scene, which lead to our model's improved layout-fidelity.
We introduce SceneFID, an object-centric adaptation of the popular Fr'echet Inception Distance metric, that is better suited for multi-object images.
arXiv Detail & Related papers (2020-03-16T21:40:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.