Hierarchical Sparse Representation Clustering for High-Dimensional Data Streams
- URL: http://arxiv.org/abs/2409.04698v1
- Date: Sat, 7 Sep 2024 03:40:55 GMT
- Title: Hierarchical Sparse Representation Clustering for High-Dimensional Data Streams
- Authors: Jie Chen, Hua Mao, Yuanbiao Gou, Xi Peng,
- Abstract summary: We propose a hierarchical sparse representation clustering (HSRC) method for clustering high-dimensional data streams.
The experimental results obtained on several benchmark datasets demonstrate the effectiveness and robustness of HSRC.
- Score: 16.228652652243888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data stream clustering reveals patterns within continuously arriving, potentially unbounded data sequences. Numerous data stream algorithms have been proposed to cluster data streams. The existing data stream clustering algorithms still face significant challenges when addressing high-dimensional data streams. First, it is intractable to measure the similarities among high-dimensional data objects via Euclidean distances when constructing and merging microclusters. Second, these algorithms are highly sensitive to the noise contained in high-dimensional data streams. In this paper, we propose a hierarchical sparse representation clustering (HSRC) method for clustering high-dimensional data streams. HSRC first employs an $l_1$-minimization technique to learn an affinity matrix for data objects in individual landmark windows with fixed sizes, where the number of neighboring data objects is automatically selected. This approach ensures that highly correlated data samples within clusters are grouped together. Then, HSRC applies a spectral clustering technique to the affinity matrix to generate microclusters. These microclusters are subsequently merged into macroclusters based on their sparse similarity degrees (SSDs). Additionally, HSRC introduces sparsity residual values (SRVs) to adaptively select representative data objects from the current landmark window. These representatives serve as dictionary samples for the next landmark window. Finally, HSRC refines each macrocluster through fine-tuning. In particular, HSRC enables the detection of outliers in high-dimensional data streams via the associated SRVs. The experimental results obtained on several benchmark datasets demonstrate the effectiveness and robustness of HSRC.
Related papers
- DREW : Towards Robust Data Provenance by Leveraging Error-Controlled Watermarking [58.37644304554906]
We propose Data Retrieval with Error-corrected codes and Watermarking (DREW)
DREW randomly clusters the reference dataset and injects unique error-controlled watermark keys into each cluster.
After locating the relevant cluster, embedding vector similarity retrieval is performed within the cluster to find the most accurate matches.
arXiv Detail & Related papers (2024-06-05T01:19:44Z) - FLASC: A Flare-Sensitive Clustering Algorithm [0.0]
We present FLASC, an algorithm that detects branches within clusters to identify subpopulations.
Two variants of the algorithm are presented, which trade computational cost for noise robustness.
We show that both variants scale similarly to HDBSCAN* in terms of computational cost and provide stable outputs.
arXiv Detail & Related papers (2023-11-27T14:55:16Z) - Spatio-Temporal Surrogates for Interaction of a Jet with High
Explosives: Part II -- Clustering Extremely High-Dimensional Grid-Based Data [0.0]
In this report, we consider output data from simulations of a jet interacting with high explosives.
We show how we can use the randomness of both the random projections, and the choice of initial centroids in k-means clustering, to determine the number of clusters in our data set.
arXiv Detail & Related papers (2023-07-03T23:36:43Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - DRBM-ClustNet: A Deep Restricted Boltzmann-Kohonen Architecture for Data
Clustering [0.0]
A Bayesian Deep Restricted Boltzmann-Kohonen architecture for data clustering termed as DRBM-ClustNet is proposed.
The processing of unlabeled data is done in three stages for efficient clustering of the non-linearly separable datasets.
The framework is evaluated based on clustering accuracy and ranked against other state-of-the-art clustering methods.
arXiv Detail & Related papers (2022-05-13T15:12:18Z) - Measuring inter-cluster similarities with Alpha Shape TRIangulation in
loCal Subspaces (ASTRICS) facilitates visualization and clustering of
high-dimensional data [0.0]
Clustering and visualizing high-dimensional (HD) data are important tasks in a variety of fields.
Some of the most effective algorithms for clustering HD data are based on representing the data by nodes in a graph.
I propose a new method called ASTRICS to measure similarity between clusters of HD data points.
arXiv Detail & Related papers (2021-07-15T20:51:06Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Determinantal consensus clustering [77.34726150561087]
We propose the use of determinantal point processes or DPP for the random restart of clustering algorithms.
DPPs favor diversity of the center points within subsets.
We show through simulations that, contrary to DPP, this technique fails both to ensure diversity, and to obtain a good coverage of all data facets.
arXiv Detail & Related papers (2021-02-07T23:48:24Z) - SDCOR: Scalable Density-based Clustering for Local Outlier Detection in
Massive-Scale Datasets [0.0]
This paper presents a batch-wise density-based clustering approach for local outlier detection in massive-scale datasets.
Evaluations on real-life and synthetic datasets demonstrate that the proposed method has a low linear time complexity.
arXiv Detail & Related papers (2020-06-13T11:07:37Z) - Stable and consistent density-based clustering via multiparameter
persistence [77.34726150561087]
We consider the degree-Rips construction from topological data analysis.
We analyze its stability to perturbations of the input data using the correspondence-interleaving distance.
We integrate these methods into a pipeline for density-based clustering, which we call Persistable.
arXiv Detail & Related papers (2020-05-18T19:45:04Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
This paper further extends RIn-Close_CVC, a biclustering algorithm capable of performing an efficient, complete, correct and non-redundant enumeration of maximal biclusters with constant values on columns in numerical datasets.
The improved algorithm is called RIn-Close_CVC3, keeps those attractive properties of RIn-Close_CVC, and is characterized by: a drastic reduction in memory usage; a consistent gain in runtime.
arXiv Detail & Related papers (2020-03-07T14:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.