Improving Deep Reinforcement Learning by Reducing the Chain Effect of Value and Policy Churn
- URL: http://arxiv.org/abs/2409.04792v1
- Date: Sat, 7 Sep 2024 11:08:20 GMT
- Title: Improving Deep Reinforcement Learning by Reducing the Chain Effect of Value and Policy Churn
- Authors: Hongyao Tang, Glen Berseth,
- Abstract summary: Deep neural networks provide Reinforcement Learning (RL) powerful function approximators to address large-scale decision-making problems.
One source of the challenges in RL is that output predictions can churn, leading to uncontrolled changes after each batch update for states not included in the batch.
We propose a method to reduce the chain effect across different settings, called Churn Approximated ReductIoN (CHAIN), which can be easily plugged into most existing DRL algorithms.
- Score: 14.30387204093346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks provide Reinforcement Learning (RL) powerful function approximators to address large-scale decision-making problems. However, these approximators introduce challenges due to the non-stationary nature of RL training. One source of the challenges in RL is that output predictions can churn, leading to uncontrolled changes after each batch update for states not included in the batch. Although such a churn phenomenon exists in each step of network training, how churn occurs and impacts RL remains under-explored. In this work, we start by characterizing churn in a view of Generalized Policy Iteration with function approximation, and we discover a chain effect of churn that leads to a cycle where the churns in value estimation and policy improvement compound and bias the learning dynamics throughout the iteration. Further, we concretize the study and focus on the learning issues caused by the chain effect in different settings, including greedy action deviation in value-based methods, trust region violation in proximal policy optimization, and dual bias of policy value in actor-critic methods. We then propose a method to reduce the chain effect across different settings, called Churn Approximated ReductIoN (CHAIN), which can be easily plugged into most existing DRL algorithms. Our experiments demonstrate the effectiveness of our method in both reducing churn and improving learning performance across online and offline, value-based and policy-based RL settings, as well as a scaling setting.
Related papers
- CDSA: Conservative Denoising Score-based Algorithm for Offline Reinforcement Learning [25.071018803326254]
Distribution shift is a major obstacle in offline reinforcement learning.
Previous conservative offline RL algorithms struggle to generalize to unseen actions.
We propose to use the gradient fields of the dataset density generated from a pre-trained offline RL algorithm to adjust the original actions.
arXiv Detail & Related papers (2024-06-11T17:59:29Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality.
We propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO)
Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions.
We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions.
arXiv Detail & Related papers (2024-05-25T10:45:46Z) - Exploiting Estimation Bias in Clipped Double Q-Learning for Continous Control Reinforcement Learning Tasks [5.968716050740402]
This paper focuses on addressing and exploiting estimation biases in Actor-Critic methods for continuous control tasks.
We design a Bias Exploiting (BE) mechanism to dynamically select the most advantageous estimation bias during training of the RL agent.
Most State-of-the-art Deep RL algorithms can be equipped with the BE mechanism, without hindering performance or computational complexity.
arXiv Detail & Related papers (2024-02-14T10:44:03Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - Boosting Offline Reinforcement Learning via Data Rebalancing [104.3767045977716]
offline reinforcement learning (RL) is challenged by the distributional shift between learning policies and datasets.
We propose a simple yet effective method to boost offline RL algorithms based on the observation that resampling a dataset keeps the distribution support unchanged.
We dub our method ReD (Return-based Data Rebalance), which can be implemented with less than 10 lines of code change and adds negligible running time.
arXiv Detail & Related papers (2022-10-17T16:34:01Z) - BRAC+: Improved Behavior Regularized Actor Critic for Offline
Reinforcement Learning [14.432131909590824]
Offline Reinforcement Learning aims to train effective policies using previously collected datasets.
Standard off-policy RL algorithms are prone to overestimations of the values of out-of-distribution (less explored) actions.
We improve the behavior regularized offline reinforcement learning and propose BRAC+.
arXiv Detail & Related papers (2021-10-02T23:55:49Z) - Continuous Doubly Constrained Batch Reinforcement Learning [93.23842221189658]
We propose an algorithm for batch RL, where effective policies are learned using only a fixed offline dataset instead of online interactions with the environment.
The limited data in batch RL produces inherent uncertainty in value estimates of states/actions that were insufficiently represented in the training data.
We propose to mitigate this issue via two straightforward penalties: a policy-constraint to reduce this divergence and a value-constraint that discourages overly optimistic estimates.
arXiv Detail & Related papers (2021-02-18T08:54:14Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks.
This problem is still not fully understood, for which two major challenges need to be addressed.
We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches.
arXiv Detail & Related papers (2020-10-02T17:13:39Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.