Metadata augmented deep neural networks for wild animal classification
- URL: http://arxiv.org/abs/2409.04825v1
- Date: Sat, 7 Sep 2024 13:36:26 GMT
- Title: Metadata augmented deep neural networks for wild animal classification
- Authors: Aslak Tøn, Ammar Ahmed, Ali Shariq Imran, Mohib Ullah, R. Muhammad Atif Azad,
- Abstract summary: This study introduces a novel approach that enhances wild animal classification by combining specific metadata with image data.
Using a dataset focused on the Norwegian climate, our models show an accuracy increase from 98.4% to 98.9% compared to existing methods.
- Score: 4.466592229376465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Camera trap imagery has become an invaluable asset in contemporary wildlife surveillance, enabling researchers to observe and investigate the behaviors of wild animals. While existing methods rely solely on image data for classification, this may not suffice in cases of suboptimal animal angles, lighting, or image quality. This study introduces a novel approach that enhances wild animal classification by combining specific metadata (temperature, location, time, etc) with image data. Using a dataset focused on the Norwegian climate, our models show an accuracy increase from 98.4% to 98.9% compared to existing methods. Notably, our approach also achieves high accuracy with metadata-only classification, highlighting its potential to reduce reliance on image quality. This work paves the way for integrated systems that advance wildlife classification technology.
Related papers
- Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
Motion-activated camera traps constitute an efficient tool for tracking and monitoring wildlife populations across the globe.
Supervised learning techniques have been successfully deployed to analyze such imagery, however training such techniques requires annotations from experts.
Reducing the reliance on costly labelled data has immense potential in developing large-scale wildlife tracking solutions with markedly less human labor.
arXiv Detail & Related papers (2023-11-02T08:32:00Z) - Effective Data Augmentation With Diffusion Models [65.09758931804478]
We address the lack of diversity in data augmentation with image-to-image transformations parameterized by pre-trained text-to-image diffusion models.
Our method edits images to change their semantics using an off-the-shelf diffusion model, and generalizes to novel visual concepts from a few labelled examples.
We evaluate our approach on few-shot image classification tasks, and on a real-world weed recognition task, and observe an improvement in accuracy in tested domains.
arXiv Detail & Related papers (2023-02-07T20:42:28Z) - Application of deep learning to camera trap data for ecologists in
planning / engineering -- Can captivity imagery train a model which
generalises to the wild? [0.0]
Deep learning models can be trained to automatically detect and classify animals within camera trap imagery.
This research proposes an approach of using images of rare animals in captivity to generate the training dataset.
arXiv Detail & Related papers (2021-11-24T21:29:14Z) - Region-level Active Learning for Cluttered Scenes [60.93811392293329]
We introduce a new strategy that subsumes previous Image-level and Object-level approaches into a generalized, Region-level approach.
We show that this approach significantly decreases labeling effort and improves rare object search on realistic data with inherent class-imbalance and cluttered scenes.
arXiv Detail & Related papers (2021-08-20T14:02:38Z) - Florida Wildlife Camera Trap Dataset [48.99466876948454]
We introduce a challenging wildlife camera trap classification dataset collected from two different locations in Southwestern Florida.
The dataset consists of 104,495 images featuring visually similar species, varying illumination conditions, skewed class distribution, and including samples of endangered species.
arXiv Detail & Related papers (2021-06-23T18:53:15Z) - Image-to-Image Translation of Synthetic Samples for Rare Classes [3.04585143845864]
Learning from few examples is a known challenge for deep learning based classification algorithms.
One potential approach to increase the training data for these rare classes is to augment the limited real data with synthetic samples.
This has been shown to help, but the domain shift between real and synthetic hinders the approaches' efficacy when tested on real data.
arXiv Detail & Related papers (2021-06-23T07:57:53Z) - An explainable deep vision system for animal classification and
detection in trail-camera images with automatic post-deployment retraining [0.0]
This paper introduces an automated vision system for animal detection in trail-camera images taken from a field under the administration of the Texas Parks and Wildlife Department.
We implement a two-stage deep convolutional neural network pipeline to find animal-containing images in the first stage and then process these images to detect birds in the second stage.
The animal classification system classifies animal images with overall 93% sensitivity and 96% specificity. The bird detection system achieves better than 93% sensitivity, 92% specificity, and 68% average Intersection-over-Union rate.
arXiv Detail & Related papers (2020-10-22T06:29:55Z) - Unifying data for fine-grained visual species classification [15.14767769034929]
We present an initial deep convolutional neural network model, trained on 2.9M images across 465 fine-grained species.
The long-term goal is to enable scientists to make conservation recommendations from near real-time analysis of species abundance and population health.
arXiv Detail & Related papers (2020-09-24T01:04:18Z) - Transferring Dense Pose to Proximal Animal Classes [83.84439508978126]
We show that it is possible to transfer the knowledge existing in dense pose recognition for humans, as well as in more general object detectors and segmenters, to the problem of dense pose recognition in other classes.
We do this by establishing a DensePose model for the new animal which is also geometrically aligned to humans.
We also introduce two benchmark datasets labelled in the manner of DensePose for the class chimpanzee and use them to evaluate our approach.
arXiv Detail & Related papers (2020-02-28T21:43:53Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.