Latent 3D Brain MRI Counterfactual
- URL: http://arxiv.org/abs/2409.05585v1
- Date: Mon, 9 Sep 2024 13:15:03 GMT
- Title: Latent 3D Brain MRI Counterfactual
- Authors: Wei Peng, Tian Xia, Fabio De Sousa Ribeiro, Tomas Bosschieter, Ehsan Adeli, Qingyu Zhao, Ben Glocker, Kilian M. Pohl,
- Abstract summary: We propose a two-stage method that constructs a Structural Causal Model (SCM) within the latent space.
In the first stage, we employ a VQ-VAE to learn a compact embedding of the MRI volume.
Subsequently, we integrate our causal model into this latent space and execute a three-step counterfactual procedure.
- Score: 25.598362396064367
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The number of samples in structural brain MRI studies is often too small to properly train deep learning models. Generative models show promise in addressing this issue by effectively learning the data distribution and generating high-fidelity MRI. However, they struggle to produce diverse, high-quality data outside the distribution defined by the training data. One way to address the issue is using causal models developed for 3D volume counterfactuals. However, accurately modeling causality in high-dimensional spaces is a challenge so that these models generally generate 3D brain MRIS of lower quality. To address these challenges, we propose a two-stage method that constructs a Structural Causal Model (SCM) within the latent space. In the first stage, we employ a VQ-VAE to learn a compact embedding of the MRI volume. Subsequently, we integrate our causal model into this latent space and execute a three-step counterfactual procedure using a closed-form Generalized Linear Model (GLM). Our experiments conducted on real-world high-resolution MRI data (1mm) demonstrate that our method can generate high-quality 3D MRI counterfactuals.
Related papers
- Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - HoloDiffusion: Training a 3D Diffusion Model using 2D Images [71.1144397510333]
We introduce a new diffusion setup that can be trained, end-to-end, with only posed 2D images for supervision.
We show that our diffusion models are scalable, train robustly, and are competitive in terms of sample quality and fidelity to existing approaches for 3D generative modeling.
arXiv Detail & Related papers (2023-03-29T07:35:56Z) - Multiscale Metamorphic VAE for 3D Brain MRI Synthesis [5.060516201839319]
Generative modeling of 3D brain MRIs presents difficulties in achieving high visual fidelity while ensuring sufficient coverage of the data distribution.
In this work, we propose to address this challenge with composable, multiscale morphological transformations in a variational autoencoder framework.
We show substantial performance improvements in FID while retaining comparable, or superior, reconstruction quality compared to prior work based on VAEs and generative adversarial networks (GANs)
arXiv Detail & Related papers (2023-01-09T09:15:30Z) - Brain Tumor Synthetic Data Generation with Adaptive StyleGANs [6.244557340851846]
We present a method to generate brain tumor MRI images using generative adversarial networks.
Results demonstrate that the proposed method can learn the distributions of brain tumors.
The approach can addresses the limited data availability by generating realistic-looking brain MRI with tumors.
arXiv Detail & Related papers (2022-12-04T09:01:33Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance.
We compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance.
Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE.
arXiv Detail & Related papers (2021-09-14T09:17:27Z) - Classification of Brain Tumours in MR Images using Deep Spatiospatial
Models [0.0]
This paper uses twotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours.
It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18.
arXiv Detail & Related papers (2021-05-28T19:27:51Z) - Medical Transformer: Universal Brain Encoder for 3D MRI Analysis [1.6287500717172143]
Existing 3D-based methods have transferred the pre-trained models to downstream tasks.
They demand a massive amount of parameters to train the model for 3D medical imaging.
We propose a novel transfer learning framework, called Medical Transformer, that effectively models 3D volumetric images in the form of a sequence of 2D image slices.
arXiv Detail & Related papers (2021-04-28T08:34:21Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.