Latent 3D Brain MRI Counterfactual
- URL: http://arxiv.org/abs/2409.05585v1
- Date: Mon, 9 Sep 2024 13:15:03 GMT
- Title: Latent 3D Brain MRI Counterfactual
- Authors: Wei Peng, Tian Xia, Fabio De Sousa Ribeiro, Tomas Bosschieter, Ehsan Adeli, Qingyu Zhao, Ben Glocker, Kilian M. Pohl,
- Abstract summary: We propose a two-stage method that constructs a Structural Causal Model (SCM) within the latent space.
In the first stage, we employ a VQ-VAE to learn a compact embedding of the MRI volume.
Subsequently, we integrate our causal model into this latent space and execute a three-step counterfactual procedure.
- Score: 25.598362396064367
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The number of samples in structural brain MRI studies is often too small to properly train deep learning models. Generative models show promise in addressing this issue by effectively learning the data distribution and generating high-fidelity MRI. However, they struggle to produce diverse, high-quality data outside the distribution defined by the training data. One way to address the issue is using causal models developed for 3D volume counterfactuals. However, accurately modeling causality in high-dimensional spaces is a challenge so that these models generally generate 3D brain MRIS of lower quality. To address these challenges, we propose a two-stage method that constructs a Structural Causal Model (SCM) within the latent space. In the first stage, we employ a VQ-VAE to learn a compact embedding of the MRI volume. Subsequently, we integrate our causal model into this latent space and execute a three-step counterfactual procedure using a closed-form Generalized Linear Model (GLM). Our experiments conducted on real-world high-resolution MRI data (1mm) demonstrate that our method can generate high-quality 3D MRI counterfactuals.
Related papers
- MRI Reconstruction with Regularized 3D Diffusion Model (R3DM) [2.842800539489865]
We propose a 3D MRI reconstruction method that leverages a regularized 3D diffusion model combined with optimization method.
By incorporating diffusion based priors, our method improves image quality, reduces noise, and enhances the overall fidelity of 3D MRI reconstructions.
arXiv Detail & Related papers (2024-12-25T00:55:05Z) - Resolution-Robust 3D MRI Reconstruction with 2D Diffusion Priors: Diverse-Resolution Training Outperforms Interpolation [18.917672392645006]
2D diffusion models trained on 2D slices are starting to be leveraged for 3D MRI reconstruction.
Existing methods pertain to a fixed voxel size, and performance degrades when the voxel size is varied.
We propose and study several approaches for resolution-robust 3D MRI reconstruction with 2D diffusion priors.
arXiv Detail & Related papers (2024-12-24T18:25:50Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - X-Diffusion: Generating Detailed 3D MRI Volumes From a Single Image Using Cross-Sectional Diffusion Models [6.046082223332061]
X-Diffusion is a novel cross-sectional diffusion model that reconstructs detailed 3D MRI volumes from extremely sparse spatial-domain inputs.
A key aspect of X-Diffusion is that it models MRI data as holistic 3D volumes during the cross-sectional training and inference.
Our results demonstrate that X-Diffusion not only surpasses state-of-the-art methods in quantitative accuracy (PSNR) on unseen data but also preserves critical anatomical features.
arXiv Detail & Related papers (2024-04-30T14:53:07Z) - HoloDiffusion: Training a 3D Diffusion Model using 2D Images [71.1144397510333]
We introduce a new diffusion setup that can be trained, end-to-end, with only posed 2D images for supervision.
We show that our diffusion models are scalable, train robustly, and are competitive in terms of sample quality and fidelity to existing approaches for 3D generative modeling.
arXiv Detail & Related papers (2023-03-29T07:35:56Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance.
We compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance.
Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE.
arXiv Detail & Related papers (2021-09-14T09:17:27Z) - Classification of Brain Tumours in MR Images using Deep Spatiospatial
Models [0.0]
This paper uses twotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours.
It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18.
arXiv Detail & Related papers (2021-05-28T19:27:51Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.