ExDDI: Explaining Drug-Drug Interaction Predictions with Natural Language
- URL: http://arxiv.org/abs/2409.05592v1
- Date: Mon, 9 Sep 2024 13:23:14 GMT
- Title: ExDDI: Explaining Drug-Drug Interaction Predictions with Natural Language
- Authors: Zhaoyue Sun, Jiazheng Li, Gabriele Pergola, Yulan He,
- Abstract summary: We propose to generate natural language explanations for DDI predictions.
We have collected DDI explanations from DDInter and DrugBank.
Our models can provide accurate explanations for unknown DDIs between known drugs.
- Score: 19.426453222204714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting unknown drug-drug interactions (DDIs) is crucial for improving medication safety. Previous efforts in DDI prediction have typically focused on binary classification or predicting DDI categories, with the absence of explanatory insights that could enhance trust in these predictions. In this work, we propose to generate natural language explanations for DDI predictions, enabling the model to reveal the underlying pharmacodynamics and pharmacokinetics mechanisms simultaneously as making the prediction. To do this, we have collected DDI explanations from DDInter and DrugBank and developed various models for extensive experiments and analysis. Our models can provide accurate explanations for unknown DDIs between known drugs. This paper contributes new tools to the field of DDI prediction and lays a solid foundation for further research on generating explanations for DDI predictions.
Related papers
- RGDA-DDI: Residual graph attention network and dual-attention based framework for drug-drug interaction prediction [4.044376666671973]
We propose RGDA-DDI, a residual graph attention network (residual-GAT) and dual-attention based framework for drug-drug interaction prediction.
A series of evaluation metrics demonstrate that the RGDA-DDI significantly improved DDI prediction performance on two public benchmark datasets.
arXiv Detail & Related papers (2024-08-27T17:13:56Z) - Learning to Describe for Predicting Zero-shot Drug-Drug Interactions [54.172575323610175]
Adverse drug-drug interactions can compromise the effectiveness of concurrent drug administration.
Traditional computational methods for DDI prediction may fail to capture interactions for new drugs due to the lack of knowledge.
We propose TextDDI with a language model-based DDI predictor and a reinforcement learning(RL)-based information selector.
arXiv Detail & Related papers (2024-03-13T09:42:46Z) - Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning [39.66471292348325]
We present KnowDDI, a graph neural network-based method that addresses the challenge of discovering potential drug-drug interactions.
KnowDDI enhances drug representations by adaptively leveraging rich neighborhood information from large biomedical knowledge graphs.
As an original open-source tool, KnowDDI can help detect possible interactions in a broad range of relevant interaction prediction tasks.
arXiv Detail & Related papers (2023-11-25T15:44:28Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - AttentionDDI: Siamese Attention-based Deep Learning method for drug-drug
interaction predictions [0.9176056742068811]
Drug-drug interactions (DDIs) refer to processes triggered by the administration of two or more drugs leading to side effects beyond those observed when drugs are administered by themselves.
Due to the massive number of possible drug pairs, it is nearly impossible to experimentally test all combinations and discover previously unobserved side effects.
We propose a Siamese self-attention multi-modal neural network for DDI prediction that integrates multiple drug similarity measures.
arXiv Detail & Related papers (2020-12-24T13:33:07Z) - Two Step Joint Model for Drug Drug Interaction Extraction [82.49278654043577]
Drug-Drug Interaction (DDI) Extraction from Drug Labels challenge of Text Analysis Conference (TAC) 2018.
We propose a two step joint model to detect DDI and it's related mentions jointly.
A sequence tagging system (CNN-GRU encoder-decoder) finds precipitants first and search its fine-grained Trigger and determine the DDI for each precipitant in the second step.
arXiv Detail & Related papers (2020-08-28T15:30:08Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
Drug target interaction (DTI) prediction is a foundational task for in silico drug discovery.
Recent years have witnessed promising progress for deep learning in DTI predictions.
We propose a Molecular Interaction Transformer (TransMol) to address these limitations.
arXiv Detail & Related papers (2020-04-23T18:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.