G-NeLF: Memory- and Data-Efficient Hybrid Neural Light Field for Novel View Synthesis
- URL: http://arxiv.org/abs/2409.05617v1
- Date: Mon, 9 Sep 2024 13:52:58 GMT
- Title: G-NeLF: Memory- and Data-Efficient Hybrid Neural Light Field for Novel View Synthesis
- Authors: Lutao Jiang, Lin Wang,
- Abstract summary: We propose G-NeLF, a versatile grid-based NeLF approach that utilizes spatial-aware features to unleash the potential of the neural network's inference capability.
G-NeLF can be trained without necessitating significant storage overhead and with the model size of only 0.95 MB to surpass previous state-of-the-art NeLF.
- Score: 9.376238965029819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Following the burgeoning interest in implicit neural representation, Neural Light Field (NeLF) has been introduced to predict the color of a ray directly. Unlike Neural Radiance Field (NeRF), NeLF does not create a point-wise representation by predicting color and volume density for each point in space. However, the current NeLF methods face a challenge as they need to train a NeRF model first and then synthesize over 10K views to train NeLF for improved performance. Additionally, the rendering quality of NeLF methods is lower compared to NeRF methods. In this paper, we propose G-NeLF, a versatile grid-based NeLF approach that utilizes spatial-aware features to unleash the potential of the neural network's inference capability, and consequently overcome the difficulties of NeLF training. Specifically, we employ a spatial-aware feature sequence derived from a meticulously crafted grid as the ray's representation. Drawing from our empirical studies on the adaptability of multi-resolution hash tables, we introduce a novel grid-based ray representation for NeLF that can represent the entire space with a very limited number of parameters. To better utilize the sequence feature, we design a lightweight ray color decoder that simulates the ray propagation process, enabling a more efficient inference of the ray's color. G-NeLF can be trained without necessitating significant storage overhead and with the model size of only 0.95 MB to surpass previous state-of-the-art NeLF. Moreover, compared with grid-based NeRF methods, e.g., Instant-NGP, we only utilize one-tenth of its parameters to achieve higher performance. Our code will be released upon acceptance.
Related papers
- GL-NeRF: Gauss-Laguerre Quadrature Enables Training-Free NeRF Acceleration [4.06770650829784]
We propose GL-NeRF, a new perspective of computing volume rendering with the Gauss-Laguerre quadrature.
GL-NeRF significantly reduces the number of calls needed for volume rendering, introducing no additional data structures or neural networks.
We show that with a minimal drop in performance, GL-NeRF can significantly reduce the number of calls, showing the potential to speed up any NeRF model.
arXiv Detail & Related papers (2024-10-19T04:49:13Z) - ProNeRF: Learning Efficient Projection-Aware Ray Sampling for
Fine-Grained Implicit Neural Radiance Fields [27.008124938806944]
We propose ProNeRF, which provides an optimal trade-off between memory footprint (similar to NeRF), speed (faster than HyperReel), and quality (better than K-Planes)
Our ProNeRF yields state-of-the-art metrics, being 15-23x faster with 0.65dB higher PSNR than NeRF and yielding 0.95dB higher PSNR than the best published sampler-based method, HyperReel.
arXiv Detail & Related papers (2023-12-13T13:37:32Z) - Neural Fields with Thermal Activations for Arbitrary-Scale Super-Resolution [56.089473862929886]
We present a novel way to design neural fields such that points can be queried with an adaptive Gaussian PSF.
With its theoretically guaranteed anti-aliasing, our method sets a new state of the art for arbitrary-scale single image super-resolution.
arXiv Detail & Related papers (2023-11-29T14:01:28Z) - Efficient View Synthesis with Neural Radiance Distribution Field [61.22920276806721]
We propose a new representation called Neural Radiance Distribution Field (NeRDF) that targets efficient view synthesis in real-time.
We use a small network similar to NeRF while preserving the rendering speed with a single network forwarding per pixel as in NeLF.
Experiments show that our proposed method offers a better trade-off among speed, quality, and network size than existing methods.
arXiv Detail & Related papers (2023-08-22T02:23:28Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects.
We propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces.
Our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes.
arXiv Detail & Related papers (2023-05-07T13:11:07Z) - R2L: Distilling Neural Radiance Field to Neural Light Field for
Efficient Novel View Synthesis [76.07010495581535]
Rendering a single pixel requires querying the Neural Radiance Field network hundreds of times.
NeLF presents a more straightforward representation over NeRF in novel view.
We show the key to successfully learning a deep NeLF network is to have sufficient data.
arXiv Detail & Related papers (2022-03-31T17:57:05Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
Neural radiance fields (NeRF) methods have demonstrated impressive novel view synthesis.
In this work we address a clear limitation of the vanilla coarse-to-fine approach -- that it is based on a performance and not trained end-to-end for the task at hand.
We introduce a differentiable module that learns to propose samples and their importance for the fine network, and consider and compare multiple alternatives for its neural architecture.
arXiv Detail & Related papers (2021-06-09T17:59:10Z) - Non-line-of-Sight Imaging via Neural Transient Fields [52.91826472034646]
We present a neural modeling framework for Non-Line-of-Sight (NLOS) imaging.
Inspired by the recent Neural Radiance Field (NeRF) approach, we use a multi-layer perceptron (MLP) to represent the neural transient field or NeTF.
We formulate a spherical volume NeTF reconstruction pipeline, applicable to both confocal and non-confocal setups.
arXiv Detail & Related papers (2021-01-02T05:20:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.