Unlearning or Concealment? A Critical Analysis and Evaluation Metrics for Unlearning in Diffusion Models
- URL: http://arxiv.org/abs/2409.05668v1
- Date: Mon, 9 Sep 2024 14:38:31 GMT
- Title: Unlearning or Concealment? A Critical Analysis and Evaluation Metrics for Unlearning in Diffusion Models
- Authors: Aakash Sen Sharma, Niladri Sarkar, Vikram Chundawat, Ankur A Mali, Murari Mandal,
- Abstract summary: We show that the objective functions used for unlearning in the existing methods lead to decoupling of the targeted concepts for the corresponding prompts.
The ineffectiveness of current methods stems primarily from their narrow focus on reducing generation probabilities for specific prompt sets.
We introduce two new evaluation metrics: Concept Retrieval Score (CRS) and Concept Confidence Score (CCS)
- Score: 7.9993879763024065
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent research has seen significant interest in methods for concept removal and targeted forgetting in diffusion models. In this paper, we conduct a comprehensive white-box analysis to expose significant vulnerabilities in existing diffusion model unlearning methods. We show that the objective functions used for unlearning in the existing methods lead to decoupling of the targeted concepts (meant to be forgotten) for the corresponding prompts. This is concealment and not actual unlearning, which was the original goal. The ineffectiveness of current methods stems primarily from their narrow focus on reducing generation probabilities for specific prompt sets, neglecting the diverse modalities of intermediate guidance employed during the inference process. The paper presents a rigorous theoretical and empirical examination of four commonly used techniques for unlearning in diffusion models. We introduce two new evaluation metrics: Concept Retrieval Score (CRS) and Concept Confidence Score (CCS). These metrics are based on a successful adversarial attack setup that can recover forgotten concepts from unlearned diffusion models. The CRS measures the similarity between the latent representations of the unlearned and fully trained models after unlearning. It reports the extent of retrieval of the forgotten concepts with increasing amount of guidance. The CCS quantifies the confidence of the model in assigning the target concept to the manipulated data. It reports the probability of the unlearned model's generations to be aligned with the original domain knowledge with increasing amount of guidance. Evaluating existing unlearning methods with our proposed stringent metrics for diffusion models reveals significant shortcomings in their ability to truly unlearn concepts. Source Code: https://respailab.github.io/unlearning-or-concealment
Related papers
- Score Forgetting Distillation: A Swift, Data-Free Method for Machine Unlearning in Diffusion Models [63.43422118066493]
Machine unlearning (MU) is a crucial foundation for developing safe, secure, and trustworthy GenAI models.
Traditional MU methods often rely on stringent assumptions and require access to real data.
This paper introduces Score Forgetting Distillation (SFD), an innovative MU approach that promotes the forgetting of undesirable information in diffusion models.
arXiv Detail & Related papers (2024-09-17T14:12:50Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces [34.00971641141313]
"Unlearning" certain concepts in large language models (LLMs) has attracted immense attention recently.
Current protocols to evaluate unlearning methods rely on behavioral tests, without monitoring the presence of associated knowledge.
We argue that unlearning should also be evaluated internally, by considering changes in the parametric knowledge traces of the unlearned concepts.
arXiv Detail & Related papers (2024-06-17T15:00:35Z) - Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient [20.091446060893638]
This paper proposes a concept domain correction framework for unlearning concepts in diffusion models.
By aligning the output domains of sensitive concepts and anchor concepts through adversarial training, we enhance the generalizability of the unlearning results.
arXiv Detail & Related papers (2024-05-24T07:47:36Z) - Probing Unlearned Diffusion Models: A Transferable Adversarial Attack Perspective [20.263233740360022]
Unlearning methods have been developed to erase concepts from diffusion models.
This paper aims to leverage the transferability of the adversarial attack to probe the unlearning robustness under a black-box setting.
Specifically, we employ an adversarial search strategy to search for the adversarial embedding which can transfer across different unlearned models.
arXiv Detail & Related papers (2024-04-30T09:14:54Z) - Model Will Tell: Training Membership Inference for Diffusion Models [15.16244745642374]
Training Membership Inference (TMI) task aims to determine whether a specific sample has been used in the training process of a target model.
In this paper, we explore a novel perspective for the TMI task by leveraging the intrinsic generative priors within the diffusion model.
arXiv Detail & Related papers (2024-03-13T12:52:37Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
We study bias arising from confounders in a causal graph for multimodal data.
Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data.
We use these features as confounder representations and use them via methods motivated by causal theory to remove bias from models.
arXiv Detail & Related papers (2023-11-28T16:46:14Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - A Survey on Evidential Deep Learning For Single-Pass Uncertainty
Estimation [0.0]
Evidential Deep Learning: For unfamiliar data, they admit "what they don't know" and fall back onto a prior belief.
This survey aims to familiarize the reader with an alternative class of models based on the concept of Evidential Deep Learning: For unfamiliar data, they admit "what they don't know" and fall back onto a prior belief.
arXiv Detail & Related papers (2021-10-06T20:13:57Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.