Unlearning or Concealment? A Critical Analysis and Evaluation Metrics for Unlearning in Diffusion Models
- URL: http://arxiv.org/abs/2409.05668v1
- Date: Mon, 9 Sep 2024 14:38:31 GMT
- Title: Unlearning or Concealment? A Critical Analysis and Evaluation Metrics for Unlearning in Diffusion Models
- Authors: Aakash Sen Sharma, Niladri Sarkar, Vikram Chundawat, Ankur A Mali, Murari Mandal,
- Abstract summary: We show that the objective functions used for unlearning in the existing methods lead to decoupling of the targeted concepts for the corresponding prompts.
The ineffectiveness of current methods stems primarily from their narrow focus on reducing generation probabilities for specific prompt sets.
We introduce two new evaluation metrics: Concept Retrieval Score (CRS) and Concept Confidence Score (CCS)
- Score: 7.9993879763024065
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent research has seen significant interest in methods for concept removal and targeted forgetting in diffusion models. In this paper, we conduct a comprehensive white-box analysis to expose significant vulnerabilities in existing diffusion model unlearning methods. We show that the objective functions used for unlearning in the existing methods lead to decoupling of the targeted concepts (meant to be forgotten) for the corresponding prompts. This is concealment and not actual unlearning, which was the original goal. The ineffectiveness of current methods stems primarily from their narrow focus on reducing generation probabilities for specific prompt sets, neglecting the diverse modalities of intermediate guidance employed during the inference process. The paper presents a rigorous theoretical and empirical examination of four commonly used techniques for unlearning in diffusion models. We introduce two new evaluation metrics: Concept Retrieval Score (CRS) and Concept Confidence Score (CCS). These metrics are based on a successful adversarial attack setup that can recover forgotten concepts from unlearned diffusion models. The CRS measures the similarity between the latent representations of the unlearned and fully trained models after unlearning. It reports the extent of retrieval of the forgotten concepts with increasing amount of guidance. The CCS quantifies the confidence of the model in assigning the target concept to the manipulated data. It reports the probability of the unlearned model's generations to be aligned with the original domain knowledge with increasing amount of guidance. Evaluating existing unlearning methods with our proposed stringent metrics for diffusion models reveals significant shortcomings in their ability to truly unlearn concepts. Source Code: https://respailab.github.io/unlearning-or-concealment
Related papers
- On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [49.60774626839712]
multimodal generative models have sparked critical discussions on their fairness, reliability, and potential for misuse.
We propose an evaluation framework designed to assess model reliability through their responses to perturbations in the embedding space.
Our method lays the groundwork for detecting unreliable, bias-injected models and retrieval of bias provenance.
arXiv Detail & Related papers (2024-11-21T09:46:55Z) - Score Forgetting Distillation: A Swift, Data-Free Method for Machine Unlearning in Diffusion Models [63.43422118066493]
Machine unlearning (MU) is a crucial foundation for developing safe, secure, and trustworthy GenAI models.
Traditional MU methods often rely on stringent assumptions and require access to real data.
This paper introduces Score Forgetting Distillation (SFD), an innovative MU approach that promotes the forgetting of undesirable information in diffusion models.
arXiv Detail & Related papers (2024-09-17T14:12:50Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts.
The models could be exploited for malicious purposes, such as generating images with violence or nudity, or creating unauthorized portraits of public figures in inappropriate contexts.
concept removal methods have been proposed to modify diffusion models to prevent the generation of malicious and unwanted concepts.
arXiv Detail & Related papers (2024-06-21T03:58:44Z) - Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces [34.00971641141313]
"Unlearning" certain concepts in large language models (LLMs) has attracted immense attention recently.
Current protocols to evaluate unlearning methods rely on behavioral tests, without monitoring the presence of associated knowledge.
We argue that unlearning should also be evaluated internally, by considering changes in the parametric knowledge traces of the unlearned concepts.
arXiv Detail & Related papers (2024-06-17T15:00:35Z) - Probing Unlearned Diffusion Models: A Transferable Adversarial Attack Perspective [20.263233740360022]
Unlearning methods have been developed to erase concepts from diffusion models.
This paper aims to leverage the transferability of the adversarial attack to probe the unlearning robustness under a black-box setting.
Specifically, we employ an adversarial search strategy to search for the adversarial embedding which can transfer across different unlearned models.
arXiv Detail & Related papers (2024-04-30T09:14:54Z) - Statistically Significant Concept-based Explanation of Image Classifiers
via Model Knockoffs [22.576922942465142]
Concept-based explanations may cause false positives, which misregards unrelated concepts as important for the prediction task.
We propose a method using a deep learning model to learn the image concept and then using the Knockoff samples to select the important concepts for prediction.
arXiv Detail & Related papers (2023-05-27T05:40:05Z) - Semantic Image Attack for Visual Model Diagnosis [80.36063332820568]
In practice, metric analysis on a specific train and test dataset does not guarantee reliable or fair ML models.
This paper proposes Semantic Image Attack (SIA), a method based on the adversarial attack that provides semantic adversarial images.
arXiv Detail & Related papers (2023-03-23T03:13:04Z) - ADDMU: Detection of Far-Boundary Adversarial Examples with Data and
Model Uncertainty Estimation [125.52743832477404]
Adversarial Examples Detection (AED) is a crucial defense technique against adversarial attacks.
We propose a new technique, textbfADDMU, which combines two types of uncertainty estimation for both regular and FB adversarial example detection.
Our new method outperforms previous methods by 3.6 and 6.0 emphAUC points under each scenario.
arXiv Detail & Related papers (2022-10-22T09:11:12Z) - Probing Classifiers are Unreliable for Concept Removal and Detection [18.25734277357466]
Neural network models trained on text data have been found to encode undesirable linguistic or sensitive concepts in their representation.
Recent work has proposed post-hoc and adversarial methods to remove such unwanted concepts from a model's representation.
We show that these methods can be counter-productive, and in the worst case may end up destroying all task-relevant features.
arXiv Detail & Related papers (2022-07-08T23:15:26Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Counterfactual Evaluation for Explainable AI [21.055319253405603]
We propose a new methodology to evaluate the faithfulness of explanations from the textitcounterfactual reasoning perspective.
We introduce two algorithms to find the proper counterfactuals in both discrete and continuous scenarios and then use the acquired counterfactuals to measure faithfulness.
arXiv Detail & Related papers (2021-09-05T01:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.